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Chapter 1

Abstract

The research presented in this thesis describes practical investigations in using stub
resonator (as a transmission line) technology for different (on-) inline sensor applications in
the field of water technology. In addition, a substantial part of the research has been
devoted to provide an adequate theoretical description of transmission line based sensors.
The main purpose of the project was to come up with the conceptual proof of principle for
using this technology for a large variety applications, ranging from fluid composition
(ethanol content of fluids) and surface modification (corrosion detection (onset) and
biofouling) to the chemical adsorption capacity (loading) of ion exchange resins. The
Introduction gives an overview of basic principles of on-line monitoring dielectric properties
of fluids, the role of dielectrometry and finally the potential role of stub resonators. The
introduction concludes with summarizing the research objectives and an outline of the
subsequent chapters of the thesis.
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General Introduction and Thesis Outline

1.1 On-line monitoring of fluids

An old and well-known English proverb says: “forewarned is forearmed”. This wisdom is
not less true in the world of sensoring than it is in daily life. But how applicable it might be,
one key aspect is implicitly assumed but certainly not explicitly stated. The factor time! Only
if the information comes in on time can appropriate action be undertaken. In the context of
sensors, this statement translates into the need for in-line and on-line sensing devices that
allow continuous monitoring. Only then are the benefits optimal. Examples of successful on-
line sensoring that substantially improved the production process can be found in the dairy
industry where on-line light scattering sensors monitor cheese manufacturing [1]. As for
clinical applications, one can think about how on-line glucose level monitoring really
improved the life of diabetes [2].

The water sector industry, the context of my research, can also benefit enormously
from on-line sensing devices, also because the ever increasing demand for water of high
quality [3-4]. Lots of effort is indeed devoted to develop a new generation of sensors,
including those possessing software for advanced modeling and statistical methods.

There is no single, generic measure of water quality. For one thing, how do we define
water quality? From the practical point of view, quality can only refer to parameters that
can be measured. The parameters of water that can be tested fall in three categories:

physical characteristics: e.g., temperature, color, suspended solids and turbidity;

chemical characteristics: e.g., nutrients, minerals, metal ions and oxides, oxygen,
organic compounds and a wide range of pollutants (e.g., pesticides, hydrocarbons,
pharmaceuticals etc.);

biological characteristics: e.g., all types of bacteria, protozoa, parasites, algae,
invertebrates, plants and other organisms.

The traditional method of monitoring water is one of collecting samples, taking them to
a lab and perform the analysis. However, this procedure is laborious and thus expensive.
The future is definitely for robust (on-) and in-line sensors. The water sector starts to realize
this as well and an overview of currently existing on-line monitoring technologies for water
can be found for instance in [5 - 6]. Whatever new type of sensor one intends to design and
develop for the water industry, crucial criteria for all of them are an optimized geometry,
easy access to data, low cost and low maintenance, and indeed on-line.

The main goal of these is to use the same type of sensing platform for different
applications whether it aquatic quality monitoring, monitoring of water distribution
systems, and/or fouling monitoring. In addition, an ideal sensor should obey the unifying
principle of design, implying that one and the same design can be used for different
applications [7].
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Chapter 1

1.2 Role of a physics based sensor in the water industry

According to [8], the definition of a physics based sensor is a device that provides
information about a physical property of a system. Examples of physics based sensors are
for instance those used to measure temperature or pressure [10-12]. Note that the
definition categorizes on the nature of the parameters to be measured rather than on the
application. Following this line of thought, the stub resonator discussed in Chapter 4 of this
thesis used to determine the ethanol content of fluids by measuring its dielectric properties
(physical parameter) is definitely a physical sensor even though the purpose of the sensor is
to measure fluid composition, more a chemical than physical property of the system.

The two parameters defining the dielectric properties of a fluid are (complex) dielectric
permittivity €. and the dielectric loss tangent tands. The general expression of the complex
dielectric permittivity of an isotropic material is given by [13]:

€ = Erp — JEim (1)
WwE;., +0O

tané,; = —™M — 2

off = e (2)

re

where ¢, [-] is the relative complex permittivity, w the angular frequency [rad/s], o the
conductivity [S/m], gy the permittivity of vacuum (=1/(uo-c)'1/2=:8.85-10'12 F/m) and tandes [-]
the dielectric loss tangent associated with all dielectric losses apart from those due to
conductivity.

Dielectric properties can be assessed by studying the response of the system by
exposing it to well-defined electric field conditions evoked by applying alternating current
(AC) of given frequency. The sensitivity of this class of sensors depends in general to a large
extent on dielectric properties and the geometry of the system, e.g., the geometry of the
electrodes and the distance between them. This dependence thus allows optimization of
the sensor for these parameters. Even though there are thus certain design requirements,
the type of sensor described in this thesis offer a large degree of freedom. The main aim of
my research was to design a sensor platform that can be used for several applications,
instead of a sensor for just one parameter. The results show the versatility of the technology
as the presented applications range from the determination of fluid composition and ion
exchange loading to monitoring corrosion and biofilm formation. The next section discusses
several examples of sensors that measure the dielectric properties of fluids.

12



General Introduction and Thesis Outline

1.3 Dielectrometry methods

Dielectrometry refers to dielectric spectroscopy techniques that measure changes of
different physical parameters of a polar material, like polarization, permittivity, and
conductivity, in response to an AC current, at one or a range of frequencies [14-15]. Many
sensors rely on dielectrometry and their applications can be found in many different fields,
among them fluid properties [15 - 22].
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The two types of dielectrometry-based sensors currently most widely used are based on
either capacitive measurements [23] or microwave technology, using sections of
transmission lines or waveguides as sensitive elements. Both technologies will be discussed
briefly.

Capacitive measurements to determine dielectric properties

The easiest way to convert a measured capacitance into an informative signal is
connecting the sensitive element to an inductor and measuring the resonant frequency of
the obtained resonant circuit. The main two advantages of these sensors are their accuracy
and the fact that they represent a non-invasive method of measuring [24]. The best-known
examples of capacitive sensors are the parallel-plate capacitor and the coaxial cylindrical
capacitor. However, due to the high impedance of the capacitive element, the resonant
frequency of these systems is very sensitive to errors caused not only by the finite
resistance of the fluid to be measured but in addition also to other sources of error, e.g., the
parasitic capacitance of all elements comprising the measuring circuit. The total capacitance
of the system can easily be of the same order of magnitude as this parasitic capacitance of
the measuring circuit. As a result, the main disadvantage of the capacitive sensor that it’s
working range is limited to low frequencies [25].

Despite this disadvantage, the water sector makes use already of existing commercially
available capacitive sensors from e.g., BEDIA and IST AG Innovative Sensor Technology (Fig.
1.).
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Chapter 1

Capacitive Level Sensor NR160 is designed to monitor Conductivity sensor from IST AG Innovative Sensor
liquids from BEDIA [26]. Technology [27]

Fig. 1. Examples of commercial available sensors based on the capacitive measurements.

Microwave technology based on transmission lines to determine dielectric properties

Transmission line based microwave technology to determine the dielectric properties of
fluids is based on measuring the reflection coefficient at a defined reference plane, usually
at the interface of the test dielectric. Advantages of this technology is the low dependence
of the resonant frequency on measuring circuit parameters, a high resolution due to the
high frequencies applied and, finally, the high absolute sensitivity [28]. Disadvantages are
the rather complex measuring setup, implying high cost of the required equipment.

1.4 Motivation for this thesis research

The aim of the study presented here was to investigate the feasibility of a new type of
sensor for the finger printing of water based on a quarter or half wave coaxial stub
resonator with the water to be investigated present as dielectric between its two
electrodes. The sensor should have high accuracy and the cost price should be low (enough).
Furthermore, the sensor was assumed to operate in- and on-line.

Most important advantage of sensors based on the concept of transmission line
technology is their broad frequency range of operation, i.e., from low frequency to
frequencies in the microwave range. In addition, the attenuation properties of stub
resonators can be measured as well over a broad frequency range. Because of this the signal
response can be presented as so-called amplitude — frequency (AF) plots. The AF plot
provides information about the resonance frequency as well as the quality factor of the
resonator, both related to the composition of the fluid sample applied as dielectric. This
type of sensor thus offers a, from the electronics point of view, an easy undemanding way
to gain information of the dielectric properties of a fluid without the need for chemical
modification or physical invasion.

Fig. 2 shows two commercially available sensors for application in the water sector.
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General Introduction and Thesis Outline

The Stevens Hydra Probe represents the Microwave Moisture Analyzer MicroPolar LB 567 / LB 568 from
advanced and robust soil moisture sensor BERTHOLD TECHNOLOGIESGmbH & Co. KG [30]
from STEVENS [29].

Fig. 2. Examples of commercial available sensors based on the microwave technology.

1.5 Modeling of transmission lines

Modeling the behavior of transmission line type of sensors requires the theoretical
description over a rather broad frequency range of both the resonance frequencies
(resonances) and total attenuation (losses). For an ideal resonator, i.e., one without any
losses [31], the resonance frequencies f..s of an open ended (A/4) and closed ended (A/2)
resonator are given by Eqgs. 3a and 3b, respectively.

fo= 2n-1 _ c¢-(2n-1) (3a)
3% SN/To 41/ € 0E€0Mrelo
(3b)

n c-n
f = =
" 2.mALc 21\ €,0€01re Mo

where

n, the order number of fs (Hz);

I, the length of the resonator (m),

¢, speed of light in vacuum (m/s);

Lo, magnetic permeability of free space (vacuum permeability) (H-m™): po=4r 107;
U, relative magnetic permeability (-);

g0, dielectric permittivity of free space (vacuum permittivity) (F-m™): eozl/(uo-c)'l/z.
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Chapter 1

In case a transmission line based sensor, i.e., a stub resonator as shown in Fig. 3, is

connected to a spectrum analyzer with tracking generator, an electrical circuit equivalent
shown in Fig. 3 is obtained
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Fig. 3. Photo of the coaxial stub resonator showing inner and outer conductor and the equivalent electric
circuit used for most of the modeling presented in this thesis.

A typical response curve of the sensor system in Fig. 3, is shown in Fig. 4.

Amplitude
|
|

 J

Frequency

Fig. 4. Schematic AF response of a transmission line based sensor showing two resonances.
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General Introduction and Thesis Outline

The AF response in figure X is affected by sensor geometry, ohmic losses in the
conductors of the resonator and the complex dielectric properties of the (composite)
dielectric material in the sensor. In a nutshell, changes in the real part of dielectric
permittivity of the dielectric between inner and outer conductors result in a shift of the
resonant frequency of the resonator i.e., a shift of the minima in the AF plot towards higher
or lower frequencies. Ohmic losses in the conductors and dielectric losses result in a lower
quality factor of the resonances i.e., in “broadening of the AF response curves and a “shift of
the minima in the AF response curves” towards higher amplitude and to some extent, also
in a shift of the resonant frequencies.

Extensive modeling of a transmission line based sensor, including all losses in the
system, opens possibilities to relate measured changes in the AF plot of a resonator filled a
fluid to a change of the properties of that fluid.

Transmission line behavior suffers from losses of the following nature [31]:

Qiotg) =0c +0p +Ag +ap (4)

where

ac, attenuation due to properties of metal (Np/m) or (dB/m);
ap, attenuation due to dielectric loss tangent (Np/m) or (dB/m);
ag, attenuation due to conductivity (Np/m) or (dB/m);

ag, attenuation due to radiation (Np/m) or (dB/m).

In a model predicting the dielectric properties of lossy fluids all these different types of
losses have to be taken into account. However, in the models presented in this thesis the
attenuation due to radiation ag was excluded because of its very low contribution to the
total loss.

As for the modeling, different models can be distinguished. As shown in Fig. 5, the
extensive model applied in this thesis [32, 33] covers both lumped element modeling [34],
applicable only for a single resonance frequency (resonance) [35], and a modeling of
transmission lines with low loss [31].
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High

Extensive

) model
Medium

Loss
d element model

Low

Y

Broadband
Frequency

Fig. 5. The schematic overview of the problem in modeling of lossy transmission lines.

1.6 Research objectives

The research presented here aimed the following objectives (in order of the subsequent
chapters in this thesis):

- Demonstrate the proof-of-principle of using transmission line based sensors for
assessing the dielectric properties of fluids.

- Providing a theoretical description of transmission line behavior, predicting the
dielectric properties of fluids from experimentally obtained AF plots.

- Extensive modeling of transmission line based sensors and validation of the model
with experiments.

- Demonstrate the ability of the sensor to monitor the content of organic mixtures.

- Explore the possibility to use the sensor as an early warning system for corrosion
detection.

- Investigate the feasibility of the sensor to monitor the onset of biofilm growth.

- Investigate the feasibility of the sensor to monitor the load degree of ion exchange
resin columns.

- Application of the extensive model for the sensor applications investigated i.e., to
explain and quantify the effects of corrosion, biofilm formation and loading of ion exchange
resin on the sensor response.

18



General Introduction and Thesis Outline

1.7 Outline of the thesis

Chapter 2 shows the proof-of-principle of a coaxial stub resonator to assess the
dielectric properties of fluids.

Chapter 3 deals with modeling and simulations of the amplitude-frequency response of
transmission line type resonators filled with lossy dielectric fluids.

Chapter 4 demonstrates the ability of the sensor evaluate bulk solvent properties of
ethanol-containing fluids.

Chapter 5 provides the proof-of-principle to apply the sensor for (early stages) of
corrosion formation.

Chapter 6 demonstrates that coaxial stub resonators can be used to detect early stages
of biofilm formation.

Chapter 7 shows that the sensor can be applied to measure the load degree of ion
exchange resin with humic acids.

Chapter 8 discusses the results obtained in a wider context and places the findings into
perspective and /or recommendations for further research to further develop stub

resonator technology.
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Chapter 2

Abstract

Here we demonstrate the proof-of-principle of a coaxial stub resonator to assess the
dielectric properties of fluids. This radio-frequency spectroscopy method is based on coaxial
stub technology and comprises quarter wave length open-ended resonators that are filled
with a liquid sample as dielectric between inner and outer conductor. Changes in the
dielectric properties of the liquid sample result in changes in the electric properties of the
resonator, e.g., its resonance frequency and quality factor. In addition to a batch resonator,
results obtained with a flow-through resonator indicate that the concept can be further
developed into a cost-efficient and low-maintenance sensor for the on-line fingerprinting of
the dielectric properties of fluids, such as drinking or waste water, ethanol and glycerol.

(@)
>
QU
O
g
0]
=
N

This chapter is based on the article published as:

N.A. Hoog-Antonyuk, W. Olthuis, M.J.J. Mayer, D. Yntema, H. Miedema, A. van den
Berg, On-line fingerprinting of fluids using coaxial stub resonator technology, Sensors and
Actuators B: Chemical, Volume 163, Issue 1, 1 March 2012, Pages 90-96,
http://dx.doi.org/10.1016/j.snb.2012.01.012.
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On-line fingerprinting of fluids using coaxial stub resonator technology

2.1 Introduction

In drinking water, surface water, waste water and industrial process fluids, a large
number of toxic or otherwise undesired components can be present at a wide range of
concentration levels. In order to safeguard water quality, the early detection of pollutants in
water is mandatory. However, currently existing (bio) chemical detection methods are
labor-intensive and by implication expensive. Even more important, all these methods are
off-line providing a momentary signature only. The aim of the present study was to develop
a fingerprinting sensing device that operates on-line instead and that is based on recording
a physical rather than a (bio) chemical parameter representative for water quality.

Examples of physical parameters to monitor and track the composition of a fluid are
those related to its dielectric properties, e.g., dielectric permittivity and loss tangent. This
can be achieved by using high or microwave frequency techniques with capacitors or
(coaxial) resonators as sensitive elements [1 - 10]. Both techniques will now be discussed
briefly.

In a capacitance-based measurement, the capacitance (as a sensing element) can be
connected to an inductor to create a resonant circuit with a characteristic resonant
frequency. However, due to the high impedance of the capacitive element, the resonant
frequency of the circuit is rather sensitive to errors caused not only by the finite resistance
of the monitored liquid, but also, for instance, by the parasitic capacity of all elements
forming the measuring circuit. As a result, the total capacitance of the system can be of the
same order of magnitude as the parasitic capacitance of the measuring circuit, especially at
high frequencies [11,12].

Microwave technology to determine the dielectric permittivity of a fluid is based on
measuring the reflection coefficient at a defined reference plane, usually the one at the
interface of the dielectric to be investigated. Advantages of these microwave based systems
are a high resolution resulting from the high frequencies applied and a high absolute
sensitivity [13, 14].

Apart from these advantages, there are some disadvantages such as the complicated
and, consequently, high construction costs, off-line sample analysis and, since the
measurements are based upon reflection, the prerequisite that at the micro scale the test
solution can be considered homogeneous [15 - 16]. Other studies assess dielectric
properties of fluids in stub resonators through so-called scattering or S-parameter
measurements requiring relatively expensive equipment [17 - 22]. Additionally, the
interpretation of S-parameter models is less straight forward which complicates the analysis
[23].

Among the different techniques a cavity perturbation technique using split-ring
resonators can be shown as an example of the sensor based on the microwave theory. The
main advantage of ring resonators is the lack of radiation loss [24]. But this benefit comes
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with a disadvantage as well; measuring the dielectric constant using microstrip ring
resonators is limited to materials having low dielectric constants. The reason is that the
cavity perturbation method is inherently limited to materials having low dielectric constants
(citation) [25]. Obviously, with a water epsilon of 80, this technology is less applicable to
measure on watery solutions.

The present contribution deals with the feasibility of a quarter wave length open ended
coaxial stub resonator as a flow-through and on-line sensing element for tracking changes in
the dielectric properties of a fluid. The fluid is present as the dielectric between the inner
and outer conductor of the resonator. This technique is less sensitive to errors as compared
to the previously mentioned reflection techniques. On-line analysis is realized by pumping
the sample continuously through the resonator using an inlet and outlet for the fluid to be
investigated. Since the sensor system can be designed such that the fluid volume between
inner and outer conductor is relatively large, it is envisaged that the sensor can also be
applied for analysis of heterogeneous mixtures. In principle, the concept outlined here
creates the possibility for on-line complex dielectric permittivity measurements in resonant
circuits at high frequencies with a high quality factor, i.e., at radio frequencies between 3
and 30 MHz (HF), at frequencies in the range of 30 MHz to 300 MHz (VHF) and at
frequencies in the microwave range between 300 MHz and 300 GHz (both UHF and EHF)
[26]. The on-line flow-through system enables fast, cost-efficient sample analyses.

2.2 Sensing technique

Fig. 1 gives a schematic overview of the coaxial resonator described in this study and its
connection to the coaxial transmission line between the function generator (FG) and the
spectrum analyzer (SA).

The sensing system comprises a function generator (FG), with an internal output
resistance of Z=50 Q, connected to a spectrum analyzer (SA), with an internal input
resistance of Zs4=50 Q, both connected by a coaxial transmission line with a characteristic
impedance of 50 Q. To this coaxial transmission line, a quarter wave length open ended
coaxial stub resonator (RE) is connected. The advantage of an open ended coaxial stub
resonator over a closed ended one is that its base resonant frequency is a factor of 2 lower.
As a result, the required length of the resonator can be reduced without compromising the
frequency range of the response. The resonator consists of an inner conductor positioned in
the center of a hollow outer conductor. The sample to be analyzed is present as dielectric
between inner and outer conductor.

In addition to Fig. 1 Fig. 2 gives a detailed schematic overview of the coaxial stub
resonator itself.
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Coaxial Stub Resonator
(RE) Outlet for a
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Frequency Spectrum O
Generator Analyzer

(FG) (SA)

Fig. 1. Basic principle of the coaxial stub resonator sensing system consisting of a function generator (FG),
a spectrum analyzer (SA) and the coaxial resonator (RE). The dotted structures indicate the inlet and the outlet
of the flow-through resonator. Apart from lacking the in- and outlet, the design of the batch resonator is
essentially the same.

No connection
between conductors

=g Top view
Vi —

with length of

Open-ended coaxial stub resonator

Main coaxial transmission line
Z=500

Fig. 2. The schematic representation of the open ended coaxial stub resonator of length | and its
connection to the transmission line between function generator FG and spectrum analyzer SA. Z, is the
characteristic impedance of the transmission line and of the coaxial stub. Note that the inner and outer
conductors at the end of the coaxial stub are not connected. The inset shows a top view of the coaxial stub.

Fig. 3 shows the electrical equivalent circuit of the device shown in Figs. 1 and 2, with
the quarter wave length coaxial stub resonator represented as a lumped element series
resonant circuit. As shown and discussed later on, Fig. 3 presents an adequate circuit analog
of our device for frequencies close to the base frequency of the resonator [27].
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Fig. 3. The electrical equivalent circuit of the sensor system of Figs. 1 and 2. Parameters L.,, Ceq, Geq and
Req represent the lumped element inductance of the resonator, the lumped element capacitance of the
resonator, the conductivity of the dielectric and losses due to the skin effect in the inner and outer conductors
of the coaxial resonator, respectively.

It is noted that a lumped element circuit as shown in Fig. 3 predicts one resonant
frequency only, whether that is the first or one of the higher resonances. In contrast, the
coaxial sensing element records all resonances within a defined frequency range. Even
though the model used can be extended to account for these odd resonances, using the
Telegrapher’s equations [28 - 32], such aim was considered beyond the scope of the present
study.

The propagation velocity of electromagnetic waves is affected by the dielectric between
the inner and outer conductor of the resonator [28 - 32]. Therefore, the resonant frequency
fres of @ quarter wave length open ended coaxial resonator with effective length I is given by
Eq. 1:

c-(2n-1)

Jres =
4’\/ Ere€oHreHo (1)

where

fres,, resonance frequency (Hz);

¢, speed of light in free space (m/s);
I, length of coaxial resonator (m);

Uy, relative magnetic permeability (-);

Lo, magnetic permeability of free space (vacuum permeability) (H-m™): po=4m 107;
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€ dielectric co dielectric permittivity: real part of the complex dielectric permittivity
£, = €,0 — JEim Where g, represents the imaginary part of &, (-);

€, dielectric permittivity of free space (vacuum permittivity), E(;:l/(/xo-c)'l/2 (F-m™);

n, resonance number.

By filling the resonator of Fig. 1 with a fluid sample, and making an amplitude —
frequency (AF) plot using the frequency generator and spectrum analyzer, the base
resonant frequency as well its odd resonances can be determined from the minimums in the
plot. Substitution of the experimentally determined value of f.s; and the stub resonator
length | in Eq. 1 enables the calculation of the relative dielectric permittivity of the fluid
sample assuming u,=1.

Besides the resonant frequency, the shape of the amplitude — frequency plot also
provides information on the dielectric losses in the fluid between inner and outer conductor
Geq and on the skin effect in the inner and outer conductors Req. In order to quantify the
values of G.4 and R., near the base resonant frequency of the stub resonator, the transfer
function V,,/Vi, needs to be derived.

The inductance L, series resistance R, capacitance C and dielectric conductance G of a
coaxial transmission line (all expressed per unit length) are given by [28, 32]:

| = Hokr In(2j+u°“r P (l+lj (2)
2n d 2n \ 2wpou, \d D

R P ( L, ! j 3)
2n6,\0.5-D 0.5-d

:Zneos,e (4)
In(D/d)

G=w-C-tanbeff (5)

where

U, relative magnetic permeability (-);
w, angular frequency, w=2m f (rad/s);

wo, angular resonance frequency, we=2r f, (rad/s);
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D, (inner) diameter of outer conductor (m);

d, (outer) diameter of inner conductor (m);

Rs, surface resistance of the metal, R, = ‘/% =6£ (Q);
S

% 2p

© 6, depth of penetration, 6 = (m);
@ Wi, Ko

N

p, specific resistance of the metal, p=1/0 (Q-m);
o, conductivity (S/m);

tand.g, dielectric loss tangent (-).

For frequencies applied in this study (f > 5 MHz), the contribution of internal inductance
to L is negligible [28]. Hence, starting from Eq. 2, the following approximation holds (Eq. 6):

, sz(QJ (6)
27T d

Note that this approximation turns L into a frequency-independent parameter. The
distributed parameters in Egs. 3 - 6 can be related to the lumped element values Leg, Ceq, Geg
and R.; by comparing the general solution of the Telegrapher’s equation for a quarter
wavelength open ended coaxial stub with the solution for the lumped element model near
the base resonant frequency fs (Egs. 7 - 10), [27]:

/
Log =L (7)
8/
Ceg =C-—
n (8)
8/
Geg =G —
n (9)
/
R, =R-—
o2 (10)
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It is noted that the base resonant frequency of the quarter wave length coaxial stub can
be derived directly from Egs. 4 - 8 and the resonance criterion LC=1/(w?), which results from
Eqg. 1 for n=1.

For the transfer function, relating the voltage of the input signal supplied by the
function generator Vj, to the voltage of the output signal recorded by the spectrum analyzer
Vout, the following relation is obtained (Eq. 11):

1 1
1/] - : +
Vout (@) _ Jwleg +1/(jwCoq +Geg) +Reg  Zsp

(11)
Vin(w) 1 1
Z.1/| - . +
Jwleg +1/(jwCoq +Geq)+Reqg  Zsp

where

Vin, voltage of the input signal supplied by FG (V);

V,ut, Voltage of the output signal recorded by SA (V);

Zs, internal resistance of the frequency generator (Q);
Req, resistance of the coaxial antenna, per unit length (Q);

Zsy, internal resistance of the spectrum analyzer (Q).

For our fluid-filled coaxial stub resonator, the first step in the analysis to obtain the
relative dielectric constant of the fluid is the determination of the resonant frequency of the
AF plot using Eq. 1. The experimentally observed shape of the AF plot can be compared to
model simulations using Eqgs. 3 - 11. Since the AF plot renders the value of the dielectric
constant the only remaining unknown parameters in Egs. 3 - 11 are the values of G.4 and
Reg-

According to the lumped element circuit in Fig. 3, the total impedance Z;,: of the coaxial
stub resonator is given by Eq. 12:

1
Zy,=jwl, +——— 4R (12)
tot eq jw Ceq n Geq eq

For the imaginary part of Z i.e., Im(Z,:) the following expression can be derived (Eq.
13):
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Geq(Geqleg + WCogReg) —WCeq (1= W Loy Cop +ReqGeg)

2 2, 2
Geg T W Cyq

Im(Z;,;) = (13)

At resonance, with w=wes and Im(Z;,t)=0, wes can be expressed in terms of Leg, Ceq and
Geq (EQ. 14):

L
1-Go, =% (14)

eq eq

For Re(Z:,t), the following expression can be derived (Eq. 15):

(1= ’LegCoq +RegGeq) + W Coq(Gegleg +CoqReq)

eqeq
Gly + W Coy”

Gegq
Re(Z;y:) = (15)

Substitution of Eq. 14 into Eq. 15 provides the following expression for Ry at resonance
(Eqg. 16):

g 4 Ceaten (16)

At resonance, the electrical equivalent circuit of Fig. 3 is reduced to a simple resistive
voltage divider (Fig. 5):

Z,
NV

Vee=Vin §zj Zsa Vsa=Vour

Fig. 4. Representation of the electrical equivalent circuit in Fig.3 at resonance as a simple resistive voltage
divider.
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Since the internal impedance of both the function generator and the spectrum analyzer
equals 50 Q, the value of Ry can be calculated from V,,: and Vj, at resonance by the use of
equation (17).

Riot =50-Vout /(Vm -2 'Vout) (17)

Reg in Eq. 16 represents the series resistance in the resonant circuit caused,
predominantly, by the skin effect in inner and outer conductor. The value of Re, can be
determined using Eq. 18 after constructing a second coaxial stub resonator but filled with air
as dielectric and resonating at the same resonant frequency as the one filled with fluid
sample. It is noted that the coaxial stub resonator filled with air is longer than the one filled
with fluid since the relative dielectric constant of the fluid is larger than that of air.

Since the dielectric losses in air are negligible, i.e., G.;=0, the total resistance Riot=Req.
The skin effect is proportional to the length of inner and outer conductor of the resonator.
Since the two resonators, one filled with air, the other with fluid, resonate at the same
frequency but have different length, Req(uiq) Needs to be corrected for the resonator length
according to:

Req(fuid) = Reg(air) ! fluid) / N air) (18)

Once the value of Requiq) has been determined, the single unknown parameter left in
Eq. 16 is the conductance G, representing dielectric losses in the fluid between the inner
and outer conductor of the stub resonator. The value of Gg, can now be determined from
the AF plot obtained with the resonator filled with fluid and using Eqgs. 16-18.

Finally, the dielectric loss tangent at resonance, describing the phase angle between the
lumped element capacitor voltage and capacitor current is given by Eq. 19:

tanbey = G,y /(w-Cey) (19)

Once the values of R.q and G.q have been determined, all parameters in Egs. 2 - 11 are
known. As a result, the AF plot can be simulated and compared to the one experimentally
obtained.
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2.3 Experimental

The experiments were performed with a HAMEG HMS3010 3 GHz Spectrum Analyzer
with Tracking Generator, both with an internal resistance Z; of 50 Q. In order to check the
internal resistance of the function generator, its output amplitude was measured with a
high impedance oscilloscope to amount 1.34 V. Subsequently, the output was loaded with a
50 Q resistor, resulting in output amplitude of 0.67 V. This result proves that the internal
resistance of the internal frequency generator of the spectrum analyzer is indeed very close
to 50 Q. The interconnecting transmission lines have characteristic impedance Z, of 50 Q.

For the experiments, two types of coaxial resonators were designed: a batch resonator
and a flow-through resonator. Apart from the (in) ability of flowing through the measured
solutions, both coaxial resonators are essentially of the same design but with different
dimensions, as summarized in Table 1. When filled with the same dielectric solution and
according to Eq. 1, both types of resonators have a different resonant frequency.

Table 1

Geometric parameters of the coaxial batch and flow-through resonators. The outer and the inner
conductors of both resonators were made from copper.

Parameter Flow—through Batch
resonator resonator
Length, / 1.01 (m)  34:10% (m)
Inner conductor diameter, d 0.5:10% (m) 0.5-10% (m)
Inner diameter of the outer conductor, D 22.0-10% (m) 22.0-107 (m)
Diameters of the fluid inlet and outlet 7.0-103% (m)
Conductivity of copper, o 5.7:10"  (S'm™)

Both inner and outer conductors are made of copper. The transmission lines were
connected to the resonator by using SMA (SubMiniature version A) connectors with a total
length of 20 mm.

To investigate the performance of both types of resonators, the following solutions
were tested as dielectric between inner and outer conductor: demineralized water with a
conductivity of 1:10-4 S/m, ethanol (100% denatured with 2-Propanol 2.5%) supplied by
BOOM B.V., glycerol (100%) supplied by VNR.

The characteristic impedance of the coaxial stub resonator equals to Eq. 20 (see also
the Supplementary Information for a detailed discussion):
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7= L Mm(ﬂj (20)
2\ ¢, \d

The characteristic impedance of both resonators as calculated with Eq. 20 was 39.8 Q
for water, 72.3 Q for ethanol and 55.5 Q for glycerol. An inevitable consequence, and hence
accepted compromise, of the range of characteristic impedance of the different solutions
used (39.8-72.3 Q) is that the resonator was not perfectly matched to the function
generator, spectrum analyzer and transmission lines, all with an impedance of 50 Q.

Experiments were performed at 20 °C and repeated 11 times. From the base frequency
obtained for each experiment, the relative dielectric permittivity £, was calculated using Eq.
1. Subsequently, the mean value of &, was calculated for the set of 11 experiments. The
experiments in the flow-through resonator were executed at recycling conditions i.e., by
pumping the liquid under investigation from a 5 liter container through the vertically-
positioned resonator in bottom-to-top direction and with the outflow returning into the
feed container. In order to deal with the relatively high viscosity of glycerol, a Master flex
peristaltic pump, model 77200-60 was used for this purpose.

It is noted that over time and depending on the dielectric and the process conditions,
both the inner conductor and the outer conductor of the flow-through resonator may be
covered by a thin layer of metal oxide. This effect was observed when the flow-through
resonator was operated continuously with a copper inner conductor for a period of 1 month
when filled with drinking water. In that particular case the resonator can be considered to
be constructed with two concentric dielectrics: one dielectric of metal oxide around the
inner conductor and the dielectric under investigation. It appears that, in this particular
case, the small layer of metal oxide dielectric around the inner conductor may have a
significant influence on the effective dielectric permittivity i.e., on the resonant frequency of
the coaxial resonator. This problem can be solved by isolating the inner conductor with a
thin inert coating and by correcting for the influence of this coating on the resonant
frequency. Prior to all experiments reported in this contribution, both inner and outer
conductors of the coaxial resonators were inspected to ensure that neither of them was
coated by a small layer of metal oxide.

In order to check whether the measurements are influenced by coupling or radiation
effects, the experimental set-up was placed in a Faraday cage with a characteristic size of
70.0 cm and a wall thickness of 3.0 mm. Based on a coaxial stub of 34.0 cm length, filled
with demineralized water as dielectric, results were compared to those obtained without
using a Faraday cage. It was found that, within experimental error, application of a Faraday
cage did not result in a frequency shift whereas the difference in amplitude at the base
frequency amounted to less than 4%. We therefore concluded that under the laboratory
conditions applied measurements were free of environmental interferences.
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2.4 Results and Discussion

Fig. 5 shows the AF plot for water, ethanol and glycerol as obtained with the batch

resonator and the experimental set-up in Fig. 1.
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Fig. 5. AF plot for demineralized water (1), glycerol (2) and ethanol (3) as obtained with the batch
resonator and the experimental set-up in Fig. 1. All experiments were executed at 20 °C.

Substitution of the obtained base resonant frequencies (24.8 MHz for water, 44.1 MHz
for ethanol and 33.9 MHz for glycerol) into Eqg. 1 results in dielectric permittivity values of
re: Ewater=80.2+0.9 (78.76 (79.5) according to [34], €ethano=25.4+0.3 (24.35 (25.13) according
to [34] and &gjycero=41.8+0.8 (42.49) according to [34], with reported literature values given
in between brackets. These results thus reveal that the batch resonator performs well with
water, ethanol and glycerol as dielectrics. Resonance in all AF plots showed up as a
minimum at a frequency predicted by reported values obtained with different experimental
methods. We, therefore, conclude that it is technically feasible to determine the dielectric
permittivity of a liquid by using this batch resonator.

As mentioned in the sensing technique section, the shape of the AF plots in Fig. 5 are
mainly determined by the skin effect in inner and outer conductors of the coaxial stub
resonator and by dielectric losses in the fluid between them. The AF plot of ethanol will
further be investigated using the lumped element model described in section 2.2. In order
to quantify the skin effect i.e., the value of R, a coaxial stub resonator with a length of 1.70
m was constructed (see also Supplementary Information). The other characteristic
dimensions of the stub resonator, such as construction material, diameter of the inner and
outer conductors were identical to those listed in Table 1. Air was applied as dielectric
between inner and outer conductor. The length of the coaxial stub resonator was chosen as
such that its resonant frequency with air as dielectric was about 44 MHz, i.e., approximately
the same as the resonant frequency of the smaller stub resonator filled with ethanol. Since
the 1.70 m coaxial stub was filled with dry air, the dielectric losses in the stub were
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negligible so that G.,=0. The values for the voltage input of the function generator Vj, and
the recorded voltage by the spectrum analyzer V,,; at the resonant frequency of the 1.70 m
coaxial stub resonator were measured to amount 66.83 mV and 2.51 mV respectively, see
also Table 2. Substitution of these values in Eq. 18 provides a Req value of 0.98 Q. Since the
coaxial stub resonator applied for the experiments with ethanol has a length of 34 cm, see
also Table 2, its value of Req i.e., Regfuig), is smaller than that of the 1.70 m stub resonator
filled with air. Substitution of these values in Eq. 17 results in Regpuia)= 0.20 Q at the
resonant frequency of 44 MHz. Since Requig) is known, the value of G4, representing the
dielectric loss in the fluid, can now be calculated from the attenuation at the resonant
frequency of 44 MHz for the 0.34 m coaxial stub resonator filled with ethanol. The values for
the voltage input of the function generator V;, and the recorded voltage by the spectrum
analyzer V,,: at the resonant frequency of the 0.34 m coaxial stub resonator filled with
ethanol were measured to amount 60.74 mV and 3.55 mV respectively. Substitution of the
determined values for Vj,, Vou: and Req in Eqs.16 - 18 provides the value for Geq=1.07-10’3 S.
Substitution of this value into Eq. 19 provides the dielectric loss tangent: tand.;=0.04.

Once all parameters defining the AF plot with the use of Egs. 3 - 11 have been
determined, an AF plot for the lumped element circuit in Fig. 3 can be calculated and
compared to the experimentally determined one. The result is show in Fig. 5. The
simulations were executed by the use of MATLAB 7.9.0 (R2009b) software.
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-35
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Fig. 6. AF plot for experimental data of ethanol (red) and modeling (blue) for the batch resonator using
Egs. 3 - 11 and the parameters in Table 2.

Fig. 6 reveals a good agreement between the simulated and experimentally determined
AF plots. Hence, it is concluded that the open ended quarter wave length batch coaxial stub
resonator performs as expected and that the lumped element circuit in Fig. 3 describes the
behavior of the coaxial stub resonator well near its base resonant frequency.

Fig. 7 shows an AF plot for water as obtained with the batch resonator but now over a
broader frequency range as compared to Fig. 5, i.e., for a frequency range from 10 to 150
MHz.
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Fig. 7. AF frequency plot for demineralized water obtained with the batch resonator at 20 °C. Resonant
frequencies for the first, second and third resonances are 24.8 MHz, 74.3 MHz and 124.7 MHz respectively.
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Fig. 8. AF plot for demineralized water (1), glycerol (2) and ethanol (3) as obtained with the flow-through
resonator and the experimental set-up in Fig. 1. All experiments were executed at 20 °C.
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Fig. 9. AF plot for demineralized water obtained with the flow-through resonator at 20 °C. Resonance
frequency for the first, second and third resonances are 8.3 MHz, 25.07 MHz, 41.99 MHz, respectively.
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Fig. 7 shows that apart from the base frequency (or 1*' resonance); the batch resonator
detects the higher resonances also. The dielectric permittivity of demineralized water as
calculated from the first, second and third resonance in Fig. 7 are 80.2+0.89, 79.4+0.51 and
78.9+0.54, respectively. The decline in amplitude of the signal with increasing frequency can
be explained by an increase of energy loss mainly as a result of the decreasing penetration
depth of the current in the inner and outer conductors due to an increased skin effect with
increasing frequency.

We also tested the flow-through resonator and Fig. 8 shows AF plot for water, ethanol
and glycerol.

Compared to Fig. 5, obtained with the batch resonator, results are very similar.
Substitution of the resonant frequencies determined from Fig. 7 in Eq. 1 results in the
following dielectric permittivity values of water, ethanol and of glycerol: €,4ter=79.9£0.86
(78.76 (79.5) according to [34], €ethanos =24.2+0.50 (24.35 (25.13) according to [34] and
Eglycero=42.9%0.56 (42.49) according to [34]. We conclude that the flow-through resonator
performs well with the solutions tested because obtained values are close to reported
experimental values by others (given in between brackets).

Fig. 9 shows an AF plot for water as obtained with the flow through resonator but now
over a broader frequency range as compared to Fig. 9 i.e., for a frequency range from about
5to 50 MHz.

As observed with the batch resonator, the flow through resonator is also able to reveal
the higher resonances. When calculating the dielectric permittivity of demineralized water
from the first, second and third resonance, we render values of 79.9+0.86, 78.7+1.5 and
78.9+1.2, respectively.

An important characteristic of our coaxial stub is that resonance occurs at relative low
frequencies. By implication, the use of commercially available but relatively expensive
spectrum or network analyzers to delineate responses in the high frequency range is no
longer required. Obviously, this reduces the investment costs for application substantially.

As was remarked already, not only the resonant frequencies but also the shape of the
AF plots contains information on the dielectric properties of the samples. In case dielectric
losses in the sample are high, the quality factor of the coaxial resonator will decrease. In
addition, the AF plot will be affected by imperfections in the experimental set-up. It is
expected that more detailed modeling of the resonator will guide us to gain more
understanding of the system described here as well as the dielectric properties of fluids
under investigation.
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2.5 Conclusions

— The concept of a quarter wave length open-ended coaxial stub resonator as sensing
device was successfully applied to measure the dielectric permittivity of water, ethanol and
glycerol.

— The coaxial resonator presented in this study performs well both in the batch as in the
flow-through mode of operation.

— The flow-through mode of operation allows the continuously on-line monitoring of
fluid samples.

— It is expected that the coaxial resonator concept can be developed further into a cost-
efficient and low maintenance sensor for dielectric spectroscopy in a broad field of specific
applications.

2.6 Future steps

Based on the results presented in this study, we expect that the concept of the coaxial
stub resonator as sensing device proves useful in a wide range of applications. Examples
include the detection of (very early) corrosion or biofouling on the inner conductor surface
of the coaxial stub, quality control in the food industry (e.g., milk, soft and alcoholic drinks)
and measuring the load and/or saturation level of ion exchange resins and activated carbon
applied as dielectrics in a coaxial stub-based device.

In addition, miniaturization of the coaxial stub sensor allows the application of much
higher frequencies, i.e., frequencies in the GHz range. This, in turn, broadens the application
range significantly as it gives way to complex dielectric radio-frequency spectroscopy for the
detection of, for instance, molecular structures, micelles or microorganisms in liquid
samples.
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2.9 Supplementary Information

Appendix A
Characteristic impedance considerations

In this section the influence of the characteristic impedance of the stub resonator
Z: stus on the behavior of the sensing system shown in Fig.1, section 2.2 is briefly discussed.
Figure A.1 gives a schematic overview of two transmission lines i.e., TL1 with characteristic
impedance Z; ;7 in series with TL2 with characteristic impedance Z; 7,5, using a connector
with characteristic impedance Zconnector-

Fig. A.2 shows a schematic representation of the AF - response of this series of
transmission lines assuming that TL1 is connected to a function generator and TL2 is
connected to a spectrum analyzer.

A~ —————

T, Z T ------- SN2z >
=S
=
——
Q. /\/\_/
g
<

Frequency
Fig. A.1. Schematic representation of two Fig. A.2. Shape of the AF-response for the series

transmission lines TL1 with Z¢ 5;; and TL2 with Z¢ 5,  of two transmission lines shown in Fig. A.1 for Z¢ ;4 =
in series, using a connector with characteristic Zcopnector = Z ¢ 712 (blue curve) and for an unmatched

impedance Zeopnector (represented by the dotted System such as Z rii= Zeonnector # Z c_ri2 (green curve).

triangle).

In case Z. 111= Zconnector # Z ¢ 112, reflections will occur at the connection point of the
connector and TL2.

Fig. A.3 gives a very schematic overview of the coaxial stub resonator sensing system
with TL1, TL2, TLstub connected by the use of a T connector. The function generator
connected to TL1, and the spectrum analyzer was connected to TL2, see also Fig. 1, section
2.2.
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Ze stus

Stub Resonator,

o
—
[}
o+
o
(§°]
=
()

T, Z, gy S T """"" YT, Z

Fig. A.3. The schematic representation of the stub resonator sensing system. TL1, TL2, TLstub are
connected using a T connector, the function generator is connected to TL1 and the spectrum analyzer to TL2,
according to Fig. 1 in section 2.2.

In practice Z. 111=Zc 112=Zconnector = 50 Q. This means that, the system in Fig. A.3 with stub
resonator is not matched and that reflections will occur at the connection of TL1, TL2,

Z¢ sTus.

Fig. A.4 shows the effect of the lossless transmission lines the AF — response for stub
resonators with different values of Z; srus.

I
B30
[
-
2
=40-
o
E
< —air, R=0, tag=0, Zc=50
-50° air, R=0, tag=0, Zc=10
---air, R=0, tag=0, Z¢=99
-60 ‘ ' ‘ - :
0 200 400 600 800 1000

Frequency (MHz)

Fig. A.4. Simulated AF-plots assuming Z; srys to be 50, 10 or 99 Q and air (g,=1) as dielectric. The ohmic
losses (R) and dielectric losses (loss tangent tag) were assumed to be zero.

45



Chapter 2

Fig. A.5. shows simulated AF-responses for different values of Z. srys for a resonator
filled with lossy dielectric (water) without ohmic losses (R=0).
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Fig. A.5. Simulated AF plots as in Fig. 1 for Z. srys values of of 50, 10 and 99 Q with water as dielectric and
for different values of loss tangent.

The value of Z; sryg can be defined as:

R+ jwlL
Z sTus ZW/rij (A1)

where the inductance L is related to both the inner diameter of the outer conductor D
and the outside diameter of the inner conductor d. The capacitance C is apart from
geometry determined by the dielectric permittivity &, of the dielectric under study, as given
by Eq. 20 in Ch. 2 of this thesis.

As an example how geometry and dimensions affect Z. srys, Table 1 summarizes the
dimensions of inner and outer conductor required to obtain a Z. sryg value of either 10, 50
or99 Q.
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Table A.1

Values of Z; s7yg in relation to the dimensions of the inner (D) and outer conductor (d) of the coaxial
resonator applied in this study.

Dielectric ZC_STUB=50 (Q) ZC_STUB=10 (Q) ZC_STUB=99 (Q)

D (mm) d(mm) D (mm) d(mm) D (mm) d(mm)
Air 25 10 25 21 25 5

Water 25 0.015 25 6 25 0.00001

Of course, there is the freedom of design of resonators with inner conductors of
different dimensions. However, deviations from commercially available standard geometries
will increase the total cost price of the sensor.

It should be also noted that from Eq. 3, it is obvious that increasing the diameter of the
inner conductor d will decrease the ohmic losses R thereby affecting Z. (Eq. Al). Besides,
Z: stus depends on the ratio of the diameters of outer conductor D and inner conductor d
(Eg. 20) and will decrease with increasing inner conductor diameter d (assuming that this
effect is larger than the aforementioned decrease of R). In other words: increasing the
diameter of the inner conductor d of the resonator will result in both a lower value of Z. and
a lower value of R (less ohmic losses). However, increasing the diameter of the outer
conductor as well results in a reduction of the cutoff frequency and consequently the
combined effects of the evanescent mode and multiple modes may occur which could be
applied in future work to increase the sensitivity of the system.

Fig. A.6 shows that different coaxial stub resonator designs are possible with the same
Z. values. The figure was added to illustrate that the sensitivity of the sensor system for
changes in ohmic losses R in the conductors can be adjusted by scaling of the resonator
geometry.

Fig. A.6. The schematic representation of the transmission lines with a different geometry (D and d) and
the same characteristic impedance Z.

In conclusion, a characteristic impedance that is not too extreme, such as e.g. 5<Zc<500
Q, avoids practical problems and still leaves freedom for optimizing a measurement setup.
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Appendix B
Additionally, the skin effect as an important parameter of this study will be discussed.

The skin effect is a tendency for alternating current (AC) to flow mostly near the outer
surface of an electrical conductor, such as metal wire. The effect becomes more and more
apparent as the frequency increases.

The main problem with the skin effect is that it increases the effective resistance of a
wire for AC at moderate to high frequencies, compared with the resistance of the same wire
at direct current (DC) and low AC frequencies. The effect is most pronounced in radio-
frequency (RF) systems, especially antennas and transmission lines
[http://whatis.techtarget.com/definition/skin-effect].

As an example, the skin depth for the copper and stainless steel wires both at 50 MHz
was calculated: 9.2 um and 59.1 um, respectively.

To model the current distribution in a round wire the following references can be used:

1. Y. Shibuya, Skin Effects in Straight Wires, Wolfram Demonstrations Project Published: November 5,
2012 (http://demonstrations.wolfram.com/SkinEffectsInStraightWires/).

2. GI. S. Smith, A simple derivation for the skin effect in a round wire, 2014 Eur. J. Phys. 35 025002.
doi:10.1088/0143-0807/35/2/025002.

3. Sv. Koerner, Skin Effect Calculation, 10 Jul 2012 (Updated 10 Jul 2012),
http://www.mathworks.com/matlabcentral/fileexchange/37443-skineffect-calculation.

Fig. B.1 demonstrates the results of modeling the current distribution in a round copper
wire of Imm at 50 MHz using program code of Sv. Koerner.

Furthermore, the formulas to estimate and optimize the practical significance of the
skin effect for particular cases are given and described in [2, this section].
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Fig. B.1. Simulation of the current density distribution in a round copper wire.
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Abstract

Stub resonators can be used to assess the dielectric properties of fluids. The resonance
frequencies, determined from the amplitude versus frequency (AF) response of such
resonators, are mainly determined by the permittivity of the fluid while damping arises from
dielectric losses. Even though this methodology has been extensively reported in the
literature, without almost any exception these studies refer to (near) ideal behavior
regarding for example, geometry and negligibly low conductivity of the fluid studied. On -
line stub resonator-based sensors (i.e., flow-through) in use for industrial applications,
however, quite often suffer from high dielectric losses, non-ideal material choice of the
conductors from an electrical point of view and unconventional resonator geometry.
Therefore, in order to ensure correct data interpretation, a straightforward model
accounting for the effects of dielectric losses, conductor losses (skin effect) and impedance
mismatches on the AF response is highly desirable. In addition, such a model can help to
optimize future sensor designs. Here, we present a lumped parameter model, essentially
based on telegrapher’s equations, that accounts for the skin effect, dielectric losses and
impedance mismatches between the transmission lines to the resonator and the resonator
respectively. The adequacy of the method, even in the case of impedance mismatch, is
demonstrated by comparing these model simulations with experimentally obtained AF
curves for both flow - through coaxial stub resonators and microstrip resonators immersed
in the fluid under investigation.

This chapter is based on the article published as:

N.A. Hoog, M.J.J. Mayer, H. Miedema, W. Olthuis, F.B.J. Leferink, A. van den Berg:
Modeling and Simulations of the Amplitude-Frequency Response of Transmission Line Type
Resonators Filled with Lossy Dielectric Fluids, Sensors and Actuators A: Physical, Volume 216,
1 September 2014, Pages 147-157. http://dx.doi.org 10.1016/j.sna.2014.05.006
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3.1 Introduction

There are different ways to determine the dielectric permittivity of fluids. In dielectric
spectroscopy [1-3], an alternating electric field is applied across two capacitor plates with
the fluid under investigation as dielectric [4-7]. Measuring the impedance of the system as a
function of frequency gives the dielectric permittivity, loss tangent, as well as their
frequency dependence. Another known technique to assess the dielectric properties of a
fluid is to apply a quarter wave length coaxial stub resonator as a sensing element by placing
the fluid under investigation between its inner and outer conductor [2, 3]. Since this method
is based on the concept of a transmission line, it is less sensitive to errors caused by the
parasitic capacitance and inductance of all elements in the measurement set-up as
compared to the previously mentioned capacitance-based measurements, especially at high
frequencies [8-10]. In a previous attempt we applied a lumped element model to a quarter
wave length open-ended coaxial stub resonator [2, 3]. Even though this first model was
shown to adequately predict the amplitude versus frequency plot near the base resonant
frequency of the stub resonator, it was limited to the fundamental (basic) resonant
frequency. In the present contribution, we extend our first model for lossy stub resonator
systems to a model that describes all resonance frequencies within a defined frequency
range. The model, based on transmission line theory, comprises a general solution of the
telegrapher’s equations and takes into account both the skin effect and dielectric losses [11,
12]. A particular challenge arises when the impedance of the stub resonator does not match
the impedance of the transmission lines, the latter typically 50 Q. The feasibility of our
method is demonstrated and discussed by comparing model simulations with
experimentally obtained data using either a coaxial stub resonator or a microstrip line
resonator. The results show that even if the system elements are unmatched, achieved by
adapting the geometry of the resonator, the model still describes the experimental data
quite well.

3.2 Model of the lossy stub resonator system

Fig. 1 gives a schematic overview of the coaxial stub resonator sensing system used in
this study for analysing the dielectric properties of a fluid.

Fig. 2 shows the equivalent electrical circuit used of the experimental set-up in Fig. 1
comprising the frequency generator (FG) with internal impedance Z;; transmission line TL1,
connecting the function generator with the coaxial stub resonator, and transmission line
TL2, connecting the coaxial stub resonator to spectrum analyzer (SA) with internal
impedance Zss. The coaxial stub resonator T, including a connector, are represented as
transmission line TL3 with characteristic impedance Zx,: and described by a distributed
element model.
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Open (AM4) or closed (A/2)

Coaxial Stub Resonator
(RE) Outlet for a
\ A T flow through
Outer L
Conductor \

Inlet for a flow

\ ajdwes

through Inner Conductor
- N-' " /
B — :,_.__.I:
Frequency Spectrum
Generator Analyzer
(FG) (SA)

Fig. 1. Schematic outline of the coaxial stub resonator sensing system consisting of a function generator
(FG), a spectrum analyzer (SA) and the coaxial stub resonator (RE). The dotted Inlet and Outlet indicate that
the batch resonator can be optionally used as flow-through resonator. The liquid sample under investigation is
applied as dielectric between inner and outer conductor of the coaxial stub resonator.

e — e — e — s
B |
| 3 |

~—d
....... _ | |
Ty : -l 3 Lo !
T s 3 3
| : :
S : ' |
S A
1 o
h P = D w = |
- N | | o |
z o : VT
Z=300 | z=500 o

Zsa

FG

SA

Fig. 2. The equivalent electrical circuit of the sensor system shown in Fig. 1. Parameters LAl, CAl, GAl and
RAI represent the resonator’s distributed element inductance, capacitance, conductivity and resistance,
respectively, all with length Al. The dotted line on T indicates either an open or closed (short) circuit,
representing a A/4 or A/2 resonator, respectively.

Based on the equivalent electric circuit of the sensor system in Fig. 2, we will now
derive a straightforward model for predicting the amplitude versus frequency (AF) plot of a
coaxial sensing system. The model is straightforward in the sense that it is based on and by
implication follows directly from the classic telegraph equations.
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Given a resonator length | of A/4, the distributed element inductance L, resistance R,
capacitance C and conductance G of a coaxial transmission line are expressed by Eqgs.1-6,
respectively [11, 14]:

L=—“°“f|n(9j+“°“f P (Llj (1)
2n d 2\ 2wpou, \d D
=P ( L, 1 ] )
216,10.5-D 0.5-d
2
5= |—=F 3)
Wi, Ky
Whol,P _ P
R, = |2HokP _ P 4
s 5 5. (4)

o
[
(]
)
o
©
<
O

_ 2mepe, (5)
In(D/d)
Gz(U'C‘tan(Seff (6)
where

Lo, magnetic permeability of free space (vacuum permeability) (H-m™): po=4r 107;
Uy, relative magnetic permeability (-);

w, angular frequency w=2m f (rad/s);

wo, angular resonance frequency, we=2r fy (rad/s);

€0, dielectric permittivity of free space (vacuum permittivity) (F-m™): egzl/(uo-c)'l/z;
¢, speed of light in vacuum (m/s);

g, relative dielectric permittivity (-);

D, (inner) diameter of outer conductor (m);

d, (outer) diameter of inner conductor (m);

Rs, surface resistance of the metal (Q);
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&5, depth of penetration (m);
p, specific resistance of the metal (Q-m): p=1/0;
o, conductivity (S/m);

tand.g, dielectric loss tangent (-).

The resistance R in Eqg. 2 is related to two physical parameters, the depth of penetration
65 in both inner and outer conductor (skin effect) and the surface resistance of the metal R
[11, 15].

It is noted that the inner and outer conductor should be made of the same material;
otherwise the model should account for two different values of the specific resistance of the
metal p in Eq. 1.

Apart from the geometry of the device (D and d), medium property u, and material
characteristics p, Eqs.1-6 contain two (unknown) parameters needed to calculate L, C and G,
i.e, & and tand.g. The loss tangent, tand.s, in Eq. 6 represents dielectric losses in the fluid
sample under investigation and is, like &, a key parameter characterizing dielectric fluid
properties. For pure, single component fluids, values of these parameters may be found in
the literature. If the resonator is filled with a fluid of unknown composition, both can be
determined by fitting the model simulations developed in this study against experimentally
determined AF plots with the real part of the complex dielectric permittivity €. and tandesg
as free fitting parameters.

. . . . R G
In an ideal resonator without any losses (i.e. R=G=0) or, in general, whenever I:E

[15], the resonance frequency f..s of an open ended (A/4) and closed end (A/2) resonator are
given by Egs. 7a and 7b, respectively [2]. In these special cases, the dielectric constant g
can be determined directly from equations 7a and 7b [11, 12]:

fo= 2n-1 _ c¢-(2n-1) (7a)
VX SN TR YN PR TR
n c-n
foo = = (7b)
2o e 21\ e gt
where

n, the order number of fs (Hz);

I, the length of the resonator (m).
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In all other cases with losses, the minimum in the AF response obtained with the set-up
shown in Fig. 1 is not defined exclusively by L and C but also by dielectric losses and losses in

the conductors. As a result, the real part of the dielectric permittivity cannot be determined
directly from the minimum in the AF plot.

In order to determine €. and tand.s from an experimentally determined AF response of
an unknown fluid, the following procedure was applied.

The relative complex dielectric permittivity &, is defined as:
& =€ _jeim (8)

where €., and g, represent the real and imaginary part of g, respectively. €. is related
to the stored energy within the dielectric, i.e., the fluid under investigation, whereas €;, is

related to the dissipation of energy within the dielectric. Note that the capacitance Cin Eq. 5
is determined solely by &..

The effective loss tangent tand.s which is a measure for the dielectric losses in the
system, is expressed by Eq. 9:

P
tan5eff :% (9)

re

where o represents the conductivity of the solution in S/m and w=2r f.s the angular
frequency in rad/s.

In Eq. 9, €, and o reflect the polarization losses and the conductivity losses in the
dielectric, respectively. It is noted that in the literature, polarization losses and dielectric
losses are sometimes lumped into one parameter i.e., into €;, [13]. In this contribution, &;n,
is defined in terms of Eq. 9, implying &, solely includes those losses due to polarization.

It should be mentioned that &;,, plays a significant role especially in the high frequency
range and, according to Eq. 9, affects tand.s. Note that tandes is affected by o and €. as
well, with o and &, both functions of frequency

Once L, R, C and G are determined, the complex characteristic impedance Z. and the

complex propagation constant y can be calculated as function of w [11, 16] and are
expressed by Egs. 10, 11:

Z. =+J(R+ jwl) /(G + jwC) (10)
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v =R+ jwl)-(G + jwC) =a + 8 (11)

where

Z., complex characteristic impedance of the lossy coaxial stub resonator (Q);
v, complex propagation constant (m™);

a, attenuation of propagation constant y (Np/m).

8, phase of the propagation constant y (rad/m);

The attenuation of propagation constant y i.e., Re(y)=a represents all losses in the stub
resonator due to metal losses (in inner and outer conductors) and dielectric losses (in the
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=
w

fluid under investigation).

The next step is to calculate the input impedance Z;, of the coaxial stub resonator of
length / from [16] expressed by Eq. 12:

Z;/ Z. +tanh(yl)
“1+2,/2, -tanh(yl) (12)

in

where
Z), load impedance of the coaxial stub resonator, [Q].

In case of a closed-ended (Z=0) and open-ended (Z==°) stub resonator, Eq. 12 reduces
to Egs.13 and 14, respectively:

Z,, =Z tanh(yl) (13)

Z,, =Z. coth(yl) (14)

Eq. 12 represents the input impedance Z;,, of a coaxial stub resonator of length |,
characteristic geometry D and d, conductor losses R and filled with a liquid (dielectric) of
conductance G as a function of frequency w.

Finally, in order to be able to construct the AF plot, an expression must be derived
relating the output voltage V,,: recorded by the spectrum analyzer to the input voltage Vi,
applied by the function generator. Close inspection of Fig. 2 reveals that the input
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impedance Z;, of the stub resonator, i.e., the input impedance of transmission line TL3, is in
parallel with the internal resistance of the spectrum analyzer Zs, and in series with the
internal resistance of the function generator Zs, see also Fig.3.

Fig. 3. The equivalent electric circuit of Fig. 2, with Zin representing the input impedance of the coaxial
stub resonator i.e., of transmission line TL3.

Given the equivalent circuit of Fig. 3, we can now derive Vout as function of Vin (Eq.
15):

: (Zin 'ZSA)
25 Zop+ 2521+ Zip - Zsp)

Vout -

(15)

Note that V,,: is complex and that the signal measured by the spectrum analyzer equals
the modulus of V,,:. Further, that the internal resistance of the function generator Zs, and

the internal resistance of the spectrum analyzer Zs, are both usually 50 Q and that Z;, can be
calculated from Eq. 12.

Equations 1 to 6 and 8 to 15 define the behavior of the experimental set-up in Figs. 1-3
and can be used to simulate AF plots, i.e., obtaining V., as a function of frequency. In case
the dielectric properties of the fluid in the stub resonator are not known, the model can be
used to estimate the dielectric properties of the fluid under investigation by fitting
simulated AF plots against experimental data with the unknowns &, and tand.s as the two
free-fitting parameters. For this purpose a fitting routine was written in Matlab (R2012b),
see Appendix D for a detailed description. It is noted that each of the parameters €, €im, O
and w (and by implication tandegas well) change with frequency. This is important to realize
since it means that the fitting procedure should be applied over a sufficiently small
frequency range so that €. and tand.s are not changing significantly over the frequency
range considered. For this reason, we determined in this study values of €. and tand.s over
each resonance separately. As a result, we obtained average values of €., and tand.s “valid”
within the frequency range of each resonance.
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Chapter 3

Microstrip line stub resonator

It should be emphasized that Egs. 10-15 provide a general solution of the telegrapher's
equations and apply to any type of transmission line operating in the Transverse
Electromagnetic Mode or TEM. If, for example, a microstrip line (MSL) is used as a sensing
element in the experimental set-up of Figs. 1 and 2, the dielectric properties of a fluid
sample in which the MSL is placed can be determined analogous to the procedure described
for the coaxial stub resonator i.e., by solving Egs. 1-6 and 8-15. However, if applied to MSL,
the expressions for the distributed elements R, C, L and G have to be adapted for the
particular geometry of the MSL used. The left panel of Fig.4 shows the geometry of an MSL
used in this study whereas the right panel shows a cross section of the MSL in more detail
with E-lines and H-lines indicated. A difference with the coaxial type of resonator is that the
MSL operates in the so-called quasi-TEM mode compared to the strictly TEM mode of
operation of the coaxial stub resonator.

Fringing effects are quite significant so that the capacitance of the MSL is larger than
calculated from the assumption that it behaves like and ideal plate capacitor between the
strip conductor and ground plane It is for this reason that the system is defined by an
effective dielectric permittivity with a value in between that of the substrate and the
working medium.

Frequency Spectrum
Generator Analyzer Y, E{working medium) Fringin fields
(FG) (sA)
Stub Resonator T
(RE) B Working
l m
= medium
P15
n =
v A
- E{wokogmedum)./; i s
; # z
R1 (g
1 mst e }: h ny
G (& -
\‘\ : [ e’ /I g l X
R2 MSL z E-lines
1 enD < GND GND
N

H-lines ———

1

Fig. 4. Left: Schematic overview of the MSL used in this study: here / is the length (m), w is the width (m),
h is the substrate thickness (m), t is the strip metallization thickness (m), €,rq is the effective dielectric
permittivity of substrate FR4, a composite material of woven fiberglass cloth and an epoxy resin, R; is the
normalized series distributed resistance for the microstrip and R, is the normalized series distributed
resistance for the ground planes of the MSL.
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Fig. 5. Schematic overview of the three-layer MSL. On the left, as depicted in [17] and on the right in
dimensions specifically adapted to this study.

The advantage of MSL-based designs above coaxial resonators is that they are well
defined, and very feasible for cost effective mass production as a consumable (disposable
sensor part) thereby reducing maintenance of a practical implementation of the MSL sensor.
Additionally, MSL based designs allow further miniaturization [30 - 33]. A potential
application of the MSL concept can be testing e.g. specific polymers or for that matter other
types of coatings the stripline is covered with for their adsorption or absorption properties
through dielectric measurements.

There are different ways to obtain the values of the inductance L, capacitance C,
dielectric conductance G and series resistance, R, per unit length of microstrip transmission
line. A first method is to determine these parameters, empirically. However, in contrast to
the coaxial resonator, for MSL this procedure is quite extensive. Another way is theoretically
by performing a full wave (3D) simulation. A third, more widely-used approach (and
followed here as well) is based on the analysis of multilayer microstrip lines by a conformal
mapping method [18], as outlined by J. Svacina in [19]. They derived and validated semi-
empirical expressions for the effective dielectric permittivity €. and characteristic
impedance Z. of a three-layer microstrip line with strip width w, substrate height h and
substrate dielectric permittivity £, a dielectric on top of the substrate of height h, and
dielectric permittivity €,, and the permittivity of air &y In the present study, &, functions as
working medium. Importantly, because our stripline is completely immersed in fluid,
implying &,, equals € of the fluid tested and the factual absence of €y, h, is assumed to
extend into infinity, as depicted in Fig.5.

Using h,—> o, and consequently w/h<1, implies that the original equation for the filling
factor g, in [19] can be reduced to:

g, =0.5-0.9/m-In(8h/w) (16)
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To derive the capacitance C and inductance L, as based on the corresponding value of
the characteristic impedance Z, requires the propagation velocity v as functions of L, C and

& eff:

1 1 c
v — — —
\/E \/“r Eeff “Ho€o \/“r Eeff

The characteristic impedance Z. for lossless transmission lines is given by:

(@)
>
<))
©
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=
w

Z.=4L/C

c

Implying L and C are expressed by:

L=z2-C
c=1/z.2
Substitution of Egs. 19 and 20 results in:

L:ZC-@/C
C:@/(Zc'c)

(17)

(18)

(19)

(20)

(21)

(22)

The effective inductance of large ground planes has been described in details in [20].
Increasing the surface area of the ground plate hardly affects the MSL capacitance. Actually,
this lack of effect was checked experimentally (see Supplementary information, Appendix

A).

Considering that the MSL stub is connected to the main transmission line by the
combination of two SMA (SubMiniature version A) connectors with a total length of 25 mm,
the additional parallel capacitance of the coaxial insertion Csys and the series inductance
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Lsya must be taken into account in Egs. 21 and 22, respectively, and can be calculated

according to [2] and is applied in the program code is shown in Appendix D: (the effect of
SMA connectors on the resonance frequency is shown in Appendix B).

The distributed resistance for microstrip R; can be obtained using the following
approximation [23] as it is expressed by Eq. 23:

(23)

where Rs represents the surface resistance of the conductors and the loss ratio LR is
given by Eq. 24:
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LR=1 u<0.5 (24)

LR:094+0132U_00062(U)2 0.5<u<10

The distributed resistance for ground R, can be approximated by [15] and is given by Eq.
25:

R,w u

R, u+5.8+0.03-1/u

(25)

This results in a total distributed resistance R of the microstrip line as it is expressed by
Eq. 26:

R=R,+R, (26)

As for the coaxial stub resonators, the distributed conductance G is given by Eq. 6:

However, in contrast to coaxial stub resonators, tand. is defined by losses in both the
fluid under investigation and the substrate material of the MSL. Therefor in this study, the
dielectric loss tan tand.s should be considered as a qualitative parameter rather than a
guantitative parameter to characterize the properties of a fluid under investigation.
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Using Egs. 6, 8-15 and 16-26, the dielectric properties of the fluid can be determined
analogous to the fitting procedure described for the coaxial stub resonator systems [24 -
27]. It is worth noting that, according to [21 - 22]; radiation losses in the MSL become
significant in case of a low characteristic impedance of the MSL, thick substrates and a low
dielectric constant. For the MSL resonator applied in this study, it was shown that radiation
losses are negligible as compared to the skin effect and dielectric losses.

3.3 Experimental

All experiments were performed with a HAMEG HMS3010 3 GHz Spectrum Analyzer
with Tracking Generator, both with internal impedance Zs and Zs, of 50 Q.

Table 1 and Table 2 give an overview of the dimensions of the two coaxial stub
resonators and the MSL applied in this study, respectively; see also Figs. 1 and 4. The
dimensions were chosen as such that (by approximation) the impedance of the system
elements matched. In contrast, the dimensions of the resonator listed in Table 3 resulted in
a mismatch of characteristic impedance.

In order to test our model and compare it with the performance of the resonators, the
following solutions were used as dielectric fluid sample: demineralized water with a
conductivity of 1-10% S/m produced by a commercially available demineralization
installation Milli-Q Advantage A10 Ultrapure Water Purification System (EMD Millipore),
ethanol (100% denatured with 2-Propanol 2.5%) supplied by BOOM B.V. (Netherlands), and
glycerol (100%) supplied by VNR (Netherlands).

The main algorithm for the model simulations was written in MATLAB code (MATLAB
R2012b, Appendix D).
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Table 1

Geometric parameters of the coaxial batch and flow-through resonators. The outer and the inner
conductors of both resonators were made from copper.

Parameter Flow-through Batch
resonator resonator
Length, / 1.01 (m) 34107 (m)
Inner conductor diameter, d 0.5-10° (m) 0.5-10° (m)
Inner diameter of the outer conductor, D 22.0-10° (m) 22.0-10° (m)
Diameters of the fluid inlet and outlet 7.0-10° (m)
Conductivity of copper, o 5.7.10"  (Sm™)

Table 2
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Geometric parameters of the MSL resonator. The outer and the inner conductor were made from HASL
(hot air solder leveling).

Parameter MSL resonator

Length, / 33-10%  (m)
Substrate thickness, h 1.93-10% (m)
Width, w 1.70-10"  (m)
Strip metallization thickness, t 1.70-10"%  (m)
Effective dielectric permittivity of substrate (FR4), &, 4.8 (-)
Conductivity of tin, o* 8.7:10° (S m)
Conductivity of copper, o' 5.7.10°  (Sm™)

! The conductivity of HASL is mostly determined by conductivity o of copper. The model simulations for

the MSL system were executed with the conductivity o of copper. The results of simulation for MSL with
different conductors can be found in Appendix C.

Table 3

Geometric parameters of the coaxial batch resonator with mismatched characteristic impedance. The
outer and the inner conductors of both resonators were made from stainless steel 316L.

Parameter Batch
resonator
Length, / 42-107 (m)
Inner conductor diameter, d 5:10% (m)
Inner diameter of the outer conductor, D 12:10° (m)
Conductivity of stainless steel 316L, o 7.7-10° (S-m™)
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3.4 Results and Discussion

Figs. 6 - 8 show AF plots for water, ethanol and glycerol as determined with the
experimental set-up shown in Fig. 1; using either the batch or flow-through resonator of
Table 1 (red curves). Blue curves indicate model simulations performed according to the
procedure outlined in the previous section.

Table 4 summarizes the major modeling results.
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Fig. 6. Experimentally obtained amplitude versus frequency plot of ethanol (red) using a quarter wave
length open-ended batch resonator (left panel) or flow-through resonator (right panel). Simulation data are
shown for comparison (blue).
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Fig. 7. Experimentally obtained amplitude versus frequency plot of glycerol (red) using a quarter wave

length open-ended batch resonator (left panel) or a flow-through resonator (right panel). Simulation data are
shown for comparison (blue).
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Fig. 8. Experimentally obtained amplitude versus frequency plot of demineralized water (red) using a
quarter wave length open-ended batch resonator (left panel) or a flow-through resonator (right panel).
Simulation data are shown for comparison (blue).
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From Figs. 6 - 8 it is concluded that there is good agreement between the model
simulations and the experimentally determined AF plots over a wide frequency range
covering two or even three resonance frequencies. This is true for both resonator
geometries and with either ethanol or water as dielectric. The results in Table 4 also show
good agreement between the determined values of €yqter aNd Eetnanos and reported literature
values. In addition, experimentally obtained values of the loss tangent tand.g are consistent.
For instance, using the batch resonator filled with ethanol, the loss factor determined at
43.8 MHz (1% resonance frequency) is 0.040. Using the ethanol-perfused flow-through
resonator instead, the loss factor as determined at 44.4 MHz (2ncl resonance frequency)
turns out to be 0.035.

For glycerol, there is also good agreement between the experimentally determined AF
plots and the model simulations, at least for its 1* resonance frequency. However, at the
second resonance frequency dielectric losses become too high for the model to accurately
predict the performance of the resonator. The reason that the model no longer accounts for
the behavior of the resonator might be that the latter starts to deviate from the TEM mode.
Even though the model is rather inadequate to account for such behavior shown by high-
loss fluids, the AF response can still be fitted to the model with the loss tangent as free
parameter. For instance, a fit of the glycerol data of Fig. 7 results in a loss tangent of 0.258
and the amplitude of the 2" resonance very similar to the one observed experimentally.

Figs. 9 - 11 show AF plots for the MSL resonator, described in Fig. 4 and Table 2,
submersed in either ethanol, glycerol or water as dielectric, respectively. Table 5
summarizes some major modeling results.

Figs. 9 - 11 and Table 5 show that also for the MSL resonator model and experimentally
obtained AF response match closely, implying that the resonant frequency, attenuation and
quality factor of the resonator are predicted well, at least when immersed in the liquids
investigated. For glycerol, differences between the experimentally determined and
simulated AF plot near the second resonance frequency are less pronounced as compared
to the results with the coaxial resonators. This effect may be caused by that fact that in the
MSL, not only the fluid under investigation but also the substrate of the MSL is a dielectric.
Since the dielectric losses of the MSL substrate are very small, overall dielectric losses are
smaller compared to those observed during coaxial resonator experiments. The fact that the
substrate of MSL-type resonators contributes to the overall apparent dielectric
compromises (FR4, which has a dielectric constant of 4.6 or 4.8 tangent loss of 0.02 and a
conductivity of 40.5-10 [30 - 31] (to more or lesser extent) its sensitivity towards (changes
in) the dielectric of the fluid to be measured. It should also be mentioned that variations in
the wire width of the conductor on the MSL add to deviations between simulation and
experimental data. Additionally, the electrical length of the immersed MSL resonator is
longer than its physical length. In future designs we will (partly) remedy this artifact by
perforating the substrate of such MSL-based devices.
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Fig. 9. Experimentally obtained amplitude versus frequency plot of ethanol (red) using a quarter wave
length open-ended MSL resonator. Simulation data are shown for comparison (blue).
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Fig. 10. Experimentally obtained amplitude versus frequency plot of glycerol (red) using a quarter wave
length open-ended MSL resonator. Simulation data are shown for comparison (blue).
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Fig. 11. Experimentally obtained amplitude versus fre%uency plot of demineralized water (red) using a
quarter wave length open-ended MSL resonator. Simulation data are shown for comparison (blue).
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Chapter 3

We supported our experimental data with a newly developed model. The model alone
suffices to describe the AF plot of our resonator, given the dielectric and loss tangent tand.s
of the sample liquid are known within the frequency range considered, in other words if the
resonator is filled with a liquid of known &, and tané.g.

In case the dielectric properties of the fluid under investigation are unknown, the values
of €. and tand.s within a frequency range of interest can be determined by fitting the
model simulations against experimental data using the procedure described in the previous
section.

In order to further investigate the predictive value of the model, systems with a
significant impedance mismatch between the resonator and the transmission lines (Z.=50 Q)
were studied.

Figs. 12 - 14 show the results obtained with a coaxial resonator of large diameter. Even
though in this case the characteristic impedance of stub resonator and transmission line
mismatch: 5.9 Q, 10.5 Q, 8.1 Q for demineralized water, ethanol and glycerol respectively,
the model still predicts the shape of the response curve with reasonable accuracy. Table 6
summarizes the major modeling results. These results show the validity of the model for a
wide range of geometries (i.e, match-mismatch conditions).
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Fig. 12. Experimentally obtained amplitude versus frequency plot of demineralized water (red) using a
quarter wave length open-ended batch resonator with mismatched characteristic impedance. Simulation data
are shown for comparison (blue).

o
[
(]
)
o
©
<
O

Amplitude (dBm)
~N
o

20 80 100

40 60
Frequency (MHz)

Fig. 13. Experimentally obtained amplitude versus frequency plot of ethanol (red) using a quarter wave
length open-ended batch resonator with mismatched characteristic impedance. Simulation data are shown for
comparison (blue).

-5

3
o
T .15
[}
o
=
£ 20
Q.
£
< 35
305 40 60 80 100
Frequency (MHz)

Fig. 14. Experimentally obtained amplitude versus frequency plot of glycerol (red) using a quarter wave
length open-ended batch resonator with mismatched characteristic impedance. Simulation data are shown for
comparison (blue).
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We recorded on three fluids of different physico-chemical nature, water, ethanol and
glycerol. For instance, polar and non-polar solvents are clearly distinctive in the sense that
dielectric permittivity €, and tandg of polar liquids exhibit stronger frequency dependence.
Even though we did not quantify the match between experimental data and model
predictions in more detail, Figs. 6-11 clearly show that the resonators described here and/or
the model itself perform better with water and ethanol than with glycerol as dielectric.
Given the followed procedure to construct the AF response, as outlined above, the model is
expected to predict the AF response more accurately when filled with fluids of high &, and
Jor low complex conductivity G because both parameters contribute to the overall loss
factor. This explains that the low loss in demineralized water is due to its low G, and the
high &, of water. For ethanol the overall loss is also relatively low but significantly higher
than that of water. It is noted that the complex conductivity G consists of a real part
accounting for the movement of free charge that is in phase with the electric field and an
imaginary part accounting for out of phase movement of dipoles that are aligned by the
electrical field. Ethanol has a slightly higher G than water in the frequency range studied as
well as a considerably lower &. As compared to water and ethanol, glycerol has a
considerably higher G in the frequency range studied and a value of ¢, that is between water
and ethanol, resulting in an increased loss level.

A very interesting alternative approach to assess the properties of fluids was developed
by Valentin et al., Filidtre et al. and more recently Cassiede et al. [34 - 37]. Their approach
comprises the characterization of the behaviour of quartz crystal resonators that are fully
immersed in a fluid under investigation. In a nutshell, the resonant frequency and
impedance characteristics of the immersed quartz crystal depend strongly on the properties
of the rigid thin fluid film attached to the resonator surface and the influence of interfacial
effects on energy dissipation. In x and vy, it was shown that the quartz-crystal resonator
system can be modeled by an acoustic equivalent to the electrical transmission line model
based on the telegraphers equations. Since the model in the present study and the quartz-
crystal system have different focus i.e., focus on the characterization of the dielectric
permittivity and dielectric losses in a fluid and focus on the fluid flow characteristics
respectively, combination of both techniques may result in a powerful sensor system. It is
noted that both techniques are sensitive to the conductivity of the fluid under investigation
asking for addition measures to operate the systems at these conditions.

So far, we tested the sensor, and by implication the model, for analytical solutions only,
i.e. solutions of known composition. To demonstrate the practical application of the sensor
and the model we extended our measurements to an “unknown” sample, in this case
Russian vodka of conductivity of 2 uS/cm and temperature of 20 °C. Following the fitting
routine described in Appendix D, the obtained values for &. (Eq.8) and tand.s were
63.91and 0.008, respectively (Fig. 15). According to [29], the static dielectric permittivity of
demineralized water with 30% - 40% ethanol falls in between 66.08 (66.00) and 59.67
(59.60). The recorded 63.91 for the vodka sample seems sensible given the specification of
the manufacturer that the vodka contains 37.5% ethanol (v/v).
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With 2 uS/cm, ethanol is a fluid of low conductivity. Due to increasing losses, the shape
of the AF response changes at higher solution conductivity, ultimately resulting in the total
disappearance of any resonance frequency peak. In such case, the system is not working as
a resonator anymore. As an example, and for comparison with the vodka sample, Fig. 16
shows data obtained with Dutch red wine of conductivity of 2.32 mS/cm (i.e., 3 orders of
magnitude higher than the conductivity of the tested vodka) and temperature of 18 °C and
containing 10.5% ethanol (v/v). As in agreement with the quartz-crystal resonator, the AF
response shown here does not provide any information any more about the liquid sample, a
direct result of the high conductivity of the fluid sample.
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Fig. 15. Experimentally obtained amplitude versus frequency plot of vodka (red) using a quarter wave
length open-ended batch resonator. Fitting data are shown for comparison (blue).

-14
-16
-18
-20

-22

Amplitude (dBm)

=24

26 10 20 30 40 50

Frequency (MHz)

Fig. 16. Experimentally obtained amplitude versus frequency plot of wine (red) using a quarter wave
length open-ended batch resonator. Fitting data are shown for comparison (blue).
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3.5 Conclusions

The model predicting the AF response of a stub resonator operated with a fluid as
dielectric presented here accounts for dielectric losses, conductor losses including the skin
effect, the characteristic impedance of the resonator and impedance mismatch between the
stub resonator and measuring equipment connected to it.

The model was successfully applied to predict the behavior of coaxial stub resonators
and MSL resonators with deionized water, ethanol and glycerol as dielectric over a
frequency range of 1 to 3 resonances. Calculated &, values derived from the experimental
data are close to reported values in the literature, for water as well as for ethanol and
glycerol. When exposed to fluids of “unknown” composition (in this case vodka and wine),
both resonator and model gave results as anticipated by the large difference between the
conductivity of the two fluids. To the best of our knowledge, in contrast to the currently
existing models, our model includes all parameters needed to simulate to a rather large
extent of accuracy the AF response of a dielectric. . Even though applied to only two
different types of resonators, the model may be useful for all those sensors based on lossy
transmission line theory. We tested different designs, a coaxial batch and flow-through
resonator and a microstrip line resonator. Results obtained with these different systems are
in close agreement. The different types of resonators all have their specific pro’s and
contra’s. The coaxial flow-through and MSL-type resonators offer the ability for continuous,
on-line measurements. We foresee most applications of this type of sensors as early
warning systems for the quality control of e.g. drinking water, industrial process water or for
that matter any other kind of fluid contaminated with impurities. Since these sensors are
characterized by high dielectric losses and unconventional resonator geometry, extensive
modeling can be a helpful tool to both optimize the sensor design and analyse experimental
data.
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3.8 Supplementary Information

Appendix A

Fig. A shows that a larger ground plane of the MSL resonator does not significantly
affect the resonance frequency fies.

Appendix B
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Fig. B shows simulation data (blue and pink) on the influence of the use of SMA
connectors on resonance frequency f.s. For comparison, experimental data are also shown
(red).

Appendix C

Figure C shows simulation data on the effect of the nature of the conductors of the MSL
resonator, i.e., tin, copper or gold, on the AF response.

The discrepancy between experimentally obtained and simulation data is partly due to

radiation losses, not included in the simulation, notably at higher frequencies (e.g. 4"
resonance frequency) [18, 19].
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Fig. A. Experimentally obtained AF plot of air using a quarter wave length open-ended MSL resonator %
with a ground plane width of either 1 cm or 20 cm. _LC)
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Fig. B. AF plot of air using a quarter wave length open-ended MSL resonator. Simulation data refer to a
system with (blue) and without SMA connectors (pink). Experimental data are also shown (red).
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Fig. C. Simulated AF data for a quarter wave length open-ended MSL resonator with conductors made of
either tin, copper or gold. Experimental data (obtained with copper) are shown for comparison.

81



Chapter 3

Appendix D

Here we demonstrate an example of the MATLAB code and data file to realize the
fitting of the static dielectric permittivity €. and effective loss tangent tand.s as parameters
of function of the output voltage V.

Main program for parameter estimation for coaxial resonator:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

load testethanol1011.txt % load the file "testethanol1011.txt"
%- See the Supplementary Information
f=testethanol1011(:,1); % Load experimental data; frequency
amplitude=testethanol1011(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

plot(f, amplitude, 'ob")

hold on

x0 = [0.001 25];

ya0 = myfun3(x0,f);

%- Plot initial values

hold on;

plot(f,ya0,'--m")

%-Boundary conditions

LB = [0 10]; % Lower bounds

UB = [1 100]; %Upper bounds

% -Solving nonlinear least-squares curve fitting

[x,resnorm] = Isqcurvefit('coax_resonator',x0,f,amplitude, LB, UB)
ya = coax_resonator(x,f);

%- Plot fit results

Hf = plot(f,ya,'r');

set(Hf, 'LineWidth',2)

hold on
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Function evaluates the model the amplitude-frequency response of coaxial transmission
line type resonators filled with lossy dielectric fluids:

function F = coax_resonator(x,f)

len =1.01; % length of the coax resonator [m]

b = 22e-3; % inner diameter of the outer conductor [m]

a = 0.5e-3;% outer diameter of the inner conductor [m]

c=3*1e+8; % speed of light in vacuum [m/s]

E=x(2) * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric [H/m]

sigma=6.64e-4;%conductivity of the dielectric between inner and outer conductors [S/m]
sigma_copper=57e+6;%conductance of the metal applied for inner and outer conductors (copper)
[1/(Ohm*m)]

C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator [F]

L = ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator [H]

%Define the input voltage supplied by the function generator [V]

vin=121.48e-3; %input voltage supplied by the function generator [V]

omega = 2*pi*f;% angular frequency [rad/s]

Eim=((omega.*E.*x(1))-sigma)./omega;%imaginary part of complex dielectric permittivity
skin_depth=sqrt(2./(omega.*u.*sigma_copper));%skin_depth

Rs=1./(sigma_copper.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma)./(omega.*E).*omega.*C;%distributed element conductance of the resonator [F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance
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Main program for parameter estimation for microstrip resonator:

clear all % Clear all variables in function workspace
close all % Close all figures

clc % Clear command window

load msl_ethanol.txt % load the file "msl_ethanol.txt"
%- See the Supplementary Information

f=msl_ethanol(:,1); % Load experimental data; frequency
amplitude=msl_ethanol(:,2); % Load experimental data; amplitude

f=f*1e+6; % Frequency conversion
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%- Plot experimental data
plot(f, amplitude, 'or')

hold on

x0 = [0.001 10];

ya0 =msl_resonator(x0,f);

% % - Plot initial values

hold on;

plot(f,ya0,'--m')

%-Boundary conditions

LB =[0 1]; % Lower bounds
UB = [1 100]; %Upper bounds
% -Solving nonlinear least-squares curve fitting
[x,resnorm] = Isqcurvefit(‘msl_resonator',x0,f,amplitude, LB, UB)
ya = msl_resonator(x,f);

%- Plot fit results

Hf = plot(f,ya,'b");

set(Hf, 'LineWidth',2)

hold on

xlabel('Frequency, (Hz)');
ylabel('Amplitude, (dBm)');
grid on

hold on

Function evaluates the model the amplitude-frequency response of microstrip
transmission line type resonators immersed in lossy dielectric fluids:

function F = msl_resonator(x,f)

c=3*1e+8; % speed of light in vacuum [m/s]

E=x(2) * 1/(4*pi*1le-7*c*c); % vacuum perlmeability [H/m]

c=3*1e+8; % speed of light in vacuum [m/s]

mr=1; %relative dielectric perlmeability of the dielectric between innerl and outerl conductors [-]
mO0=4*pi*1le-7; % magnetic permeability of the dielectric [H/m]

m = mr*mo; % magnetic perlmeability of the dielectric [H/m]

sigma=6e-4;%conductivity of the dielectric under test [S/m)]
sigma_copperl=57e+6;%conductance of the metal applied for innerl and outerl conductors (stainless steel)
[1/(Ohm*m)]

h=0.00193;%thickness ('height') of substrate [m]

t=0.00017;%thickness of strip metallization [m]

w=0.00017; %width of microstrip [m]

u=w/h;% magnetic perlmeability of the dielectric [H/m]

lensma=5.4e-3+17.25e-3

len=0.33+lensma; % length of the microstrip resonator [m]

erl=4.8; % static dielectric perlmittivity of FR4

%relative dielectric perlmeability of the dielectric [-]

e0=1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

gl= 0.5+ 0.9/(pi*log(8*h/w)) % filling factor (by J. Svacina)

g2=0.5-0.9/(pi*log(8*h/w)) % filling factor (by J. Svacina)
e_eff=er1*q1+x(2)*((1-91)*(1-91))/(x(2)*(1-q1-gq2)+g2) % effective permittivity (by J. Svacina)
Zc=60*log(8*h/w)/sqrt(e_eff) % characteristic impedance (by J. Svacina)
Cmsl=sqrt(e_eff)/(Zc*c) % capacitance of msl [H/m]

Lmsl=Zc*sqgrt(e_eff)/(c) % inductance of msl [H/m]

Lsma= 3.9452e-07; % inductance of sma [H/m]
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Csma= 6.2063e-11; % capacitance of sma [H/m]
L=(Lsma*lensma/(lensma+len))+(Lmsl*len/(lensma+len)) % inductance of msl resonator+sma [H]
C=(Csma*lensma/(lensma+len))+(Cmsl*len/(lensma+len)) % capacitance of msl resonator+sma [F]
%

%Define the input voltage supplied by the function generlator [V]

vin=129.48e-3; %input voltage supplied by the function generlator [V]
omega = 2*pi*f;% angular frequency [rad/s]
Eim=((omega.*E.*x(1))-sigma)./omega;%imaginary part of complex dielctric perlmittivity
skin_depth=sqrt(2./(omega.*m.*sigma_copperl));%skin_depth
%
% distributed element resistance R of the msl resonator [Ohm/m] by Collin et al.
if (u<=0.5) please put comment and / or reference

LR=1; ;% Loss ratio [by Collin]
else

LR=0.94+0.132*u-0.0062*u”2; % Loss ratio [by Collin]
end
Rs=1./(sigma_copperl.*skin_depth);% surface resistivity of the innerl and outerl conductor of the resonator
R1=(Rs*LR*(1/pi+1/pi*2*log(4*pi*w/t)))/w; % Normalized series resistance of for the microstrip [by Collin]
R2=(Rs*(u/(u+5.8+0.03*1/u)))/w;% Normalized series resistance of the ground plane [by Collin]
R=R1+R2;% distributed element resistance R of the resonator [Ohm/m)]
%
G=(omega.*Eim+sigma)./(omega.*E).*omega.*C;%distributed element conductance of the resonator [F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C))); %complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]
%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.
Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characterlistic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzerl [V]
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F =20.*log10(vout)+13;%vout as a powerl ratio in dBm i.e., the measured powerl referlenced to one mWatt
and the underllying assumption of a 50 Ohm load resistance

Additional program to calculate the L and C for SMA connectors:

clc

%This program allows to calculate the inductance and capacitance of
%different combinations of sma connectors

len = 5.4e-3+17.25e-3 % Total length of sma for PCB and sma T [m]

b =7.76e-3;% Outer conductor [m]

a =1.08e-3; % Inner conductor [m]

Er = 2.2; % The inner dielectric material of sma is teflon

%Dielectric permittivity of teflon is 2.2

Ur=1,;
E = Er * 8.854e-12; %Permittivity
u=Ur*1.257e-6; %Permeability

C=(2*pi*E)/(log(b/a)) % Capacitance
L = (u/(pi*2))*log(b/a) %lInductance
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Chapter 4

Abstract

Here we demonstrate the proof-of-principle of a new type of sensor to evaluate bulk
solvent properties of ethanol. Our sensing device is based on the operating principle of a
quarter wave length open-ended coaxial stub resonator. This technique is feasible for in-line
measurements in a flow-through sensor that, if desirable, can be embedded in existing
process piping or equipment. The adequacy of the method is demonstrated by comparing
experimental data with different mathematical models predicting the dielectric properties
of binary mixtures. Even though we used a coaxial stub resonator to assess the properties of
binary water — ethanol mixtures, the potential applicability of the technique reaches further.
Indeed, the method introduced here might be a useful tool in the field of food industry,
organic chemistry, biochemistry and microbiology for on-line monitoring the content of
ethanol.
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This chapter is based on the article submitted as:

N.A. Hoog, H. Miedema, M.J.J. Mayer, W. Olthuis, S. G. Kataev, A. van den Berg, On-line
Method for Assessing the Ethanol Content of Solutions Using Coaxial Stub Resonator
Technology, Measurement
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On-line Method for Assessing the Ethanol Content of Solutions Using Coaxial Stub
Resonator Technology

4.1 Introduction

The direct real-time determination of ethanol is an essential tool in the production
process of alcoholic beverages like spirits, wine and beer, among others [1, 2]. Despite the
diversity of existing technologies [3, 4], there is a lack of sensors that can operate both in-
line and off-line and can analyze both large and small fluid volumes.

Coaxial stub resonators consist of an inner and outer conductor separated by a
dielectric medium, in our particular case water, possibly containing different levels of
ethanol. With an input signal of constant amplitude but variable frequency, the frequency of
lowest load impedance, i.e., the resonance frequency (f.s), is determined. The value of f.s
solely depends on the resonator length, the relative magnetic permeability of the material
the sensor is made of and the dielectric permittivity of the fluid. The amplitude output at f.s
depends on the characteristic impedance of the resonator, which, in turn, depends on
material and geometrical parameters (e.g., ratio of inner and outer conductor diameter) and
fluid characteristics (dielectric permittivity). Apart from f,.s and the output amplitude, the
shape (e.g., width of the resonance peak) of the amplitude-frequency or AF response
depends on losses in both conductors (e.g., skin effect) and dielectric losses in the fluid (e.g.,
due to the conductivity of ions present). In two previous publications [5, 6] we showed that
a sensor based on this principle can be used to monitor the composition of the fluid that
acts as dielectric in between the two conductors. In addition, it was possible to adequately
model and predict the experimentally observed response, including all the losses. It is also
worth to mention that the inline sensor based on stub resonator technology can be realized
using standard commercially available electronic components like a microcontroller,
function generator chip and ADC. We thus developed a sensor to determine the ethanol
content in watery solutions that is easy in use and low cost in both manufacturing and
operation.
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4.2 Sensor description

The coaxial transmission line-based stub resonator (with flow-through ability) has been
discussed in detail previously [5, 6]. Here we apply this technology to assess the dielectric
permittivity of ethanol containing watery solutions and by that their ethanol content. In an
ideal resonator without any losses, the resonance frequency fs of an open ended (A/4) and
closed end (A/2) resonator are given by Eqs. 1a and 1b, respectively. In these special cases,
the dielectric constant g,. can be determined directly from equations 1a and 1b:

2n-1 _ c¢-(2n-1)
2:ALC  Al\JE 8l pebo

Jres = (1a)

fres == (1b)
2-t-NLC  21\/€,.E0Mre Mo

(@)
-
Q
©
—
(1)
=
B

where

n, the order number of fs (Hz);

I, the length of the resonator (m),

¢, speed of light in vacuum (m/s);

Lo, magnetic permeability of free space (vacuum permeability) (H-m™): po=4r 107;
U, relative magnetic permeability (-);

€0, dielectric permittivity of free space (vacuum permittivity) (F-m™): eozl/(uo-c)'l/z.

Eeff IS @ complex parameter:

Ecff = Ere + JEim (2)

where € and &, represent the real and imaginary part of &g, respectively.

Apart from an effect on &5, the presence of ethanol in water changes the loss tangent
tandeg of the mixture:
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P
tan5eff :% (3)

re

where o represents the conductance of the solution in S/m and w=2nr f,.s the angular
frequency in rad/s.

Changes of g4 and tand.g become visible as changes in the amplitude versus frequency
(AF) response of the sensor. The coaxial-type resonator applied in this study consisted of a
function generator (FG) and a spectrum analyzer (SA), both implemented in a HAMEG
HMS3010 spectrum analyzer with tracking generator. All interconnecting transmission lines
had characteristic impedance (Z;) of 50 Q and SMA-type connectors of 25 mm length
(SubMiniature version A) were used. Table 1 gives an overview of the physical dimensions of
the quarter-wave (A/4) open-ended coaxial stub resonator applied in this study.

Table 1

Geometric parameters of the flow-through resonator with outer and inner conductors made from
stainless steel 316L.

Parameter Flow-through
resonator
Length, / 29-10™ (m)
Inner conductor diameter, d 1.5:107 (m)
Inner diameter of the outer conductor, D 25-10° (m)
Diameters of the fluid inlet and outlet 15-10°2 (m)
Conductivity of stainless steel 316L, o 7.7.10°  (sm™)

4.3 Models to calculate &.4 of binary mixtures

In the case of mixtures, .4 is a function of the dielectric permittivity & and volume

fraction V; of the components present. Most frequently used models for the calculation of
gefrinclude:

1) Maxwell Garnett Model (MGM) for two dielectric composites with a dilute
conductive phases, based on dispersion theory [7-10] and expressed by:

£, +2e, V(g5 —£9)

Eeff = €1
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2) Lichtenecker logarithmic law (LLL), also based on dispersion theory [7, 9] and
expressed by:

lgecr =D Vi-lge; (5)
i=1

3) Refractive mixing dielectric model (GRMDM) [11], expressed by:

4.4 Material and methods

(@)
-
Q
©
—
(1)
=
B

The performance of the sensor was tested using homogeneous mixtures of
demineralized water (conductivity of 1-10* S/m) and absolute analytical ethanol (C,HsOH;
Merck KGaA).

4.5 Results and discussion

Fig. 1 shows the AF plots for pure H,O (black) and pure C,HsOH (red), whereas Fig. 2
depicts AF responses obtained for water containing different volume fractions (V;) of
ethanol. For clarity reasons here only the first resonance is shown.
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Fig. 1. AF plots recorded for pure H,0 (black) and pure C,HsOH (red) (1000 points/scan).
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Fig. 2. First resonance of AF plots recorded for H20-C2H50H mixtures of different composition (1000
points/scan).

At low frequencies, the AF response is mainly determined by &, of .4 (Egs. 2, 3) and
the conductivity of the dielectric. At higher frequencies, the influence of g;, on &cgincreases
(Egs. 2, 3). Consequently, the sensitivity of the sensor increases with increasing frequency,
an effect already obvious from Fig. 2, e.g. compare the difference between 0% and 10% v/v
response versus the one between 90% and 100% v/v.

Resonance in all AF plots shows up as a minimum in the AF plot at f.,. Substitution of
fres (29.0 and 52.1 MHz for pure water and pure ethanol, respectively) into Eq. 1 renders
Ewater=79.5 and Eethano=24.6. Reported €yater aNd Eethanos Values, all obtained at 20 °C but with
different experimental methods [12, 13], range from 78.8 to 79.5 for water and 24.4 to 25.1
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for ethanol [15]. Apart from the experimental method, the way the analytical ethanol has
been produced might affect its final ethanol content, e.g., due to fermented residues of
sugar. Noteworthy, at lower concentration the (effective) ethanol concentration in solution
is lowered by ethanol sticking to the inner wall of the resonator, thereby changing the AF
response to lower frequencies [14].

Despite the variation in reported &ygter and Eetnanos Values, we conclude that the values
obtained with the stub resonator are in close agreement with those found in the literature.

Fig. 3 compares experimentally obtained data for the first resonance and the models
(see also [15]) addressed in section 3 for calculating €. Whereas all models accurately
predict . for pure solutions, be that water or ethanol, for reasons unknown they all
underestimate €. of mixtures containing 20-80% ethanol. Note that experimental data
(blue) reported in [15] is also more in accordance with our experimental data than with data
generated by the different models. The inset shows the same experimental data but linearly
fitted, resulting in a regression coefficient >0.99. The linear response implies sensor
sensitivity independent of the ethanol percentage of the solution, a key characteristic from
a practical point of view, notably for the calibration protocol.
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f=79.5490-0.5549*x

Rsqr =0.9981
o~ Experiment b
Linear Regression |
L ' epression  Geg,
&Q 80 100
ﬁ? TR TAY
o~ \/0}

40 MGM
—=== LLL
30 - GRMDM
= |andolt-Borstein
20 T T T T T
0 20 40 60 80 100

V; of CoH50H (%)

Fig. 3. Comparison between 1% f,. calculated from the models and obtained experimentally applying
different concentrations of C,HsOH in H,0 solutions.
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4.6 Conclusions

The concept of a A/4 length open-ended coaxial stub resonator as sensing device was
successfully applied to measure the dielectric permittivity of binary ethanol-water mixtures.
The close agreement between calculated values of €ygter and €ethanor and those reported
previous makes us conclude that the coaxial stub resonator can be used to determine the
dielectric permittivity of a liquid, and by that its ethanol content. The flow-through mode of
operation allows the continuously on-line monitoring of fluid samples. It is expected that
the coaxial resonator concept can be developed further into a cost-efficient and low
maintenance sensor for assessing the ethanol content in a broad field of specific
applications.
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Abstract

Here we demonstrate the proof-of-principle of a new type of sensor to assess effects
due to corrosion of metal surfaces. The method can be applied to all situations where
metals are exposed to a corrosive (fluidic) environment, including, for instance, the interior
of pipes and tubes. The sensing device is based on the operating principle of a quarter wave
length open-ended stub resonator. In the absence of corrosion, inner and outer conductors
of the resonator are separated by a single dielectric, i.e., a fluid. Oxidation of the metal
surface of inner and/or outer conductor changes the properties of the dielectric between
inner and outer conductor because it introduces a dielectric permittivity that differs from
that of the fluid. Additionally, corrosion affects the skin effect and the effective resistance of
the corroding inner and outer conductors of the stub resonator. As a result the recorded
amplitude-frequency (AF) plot shows a shift of the resonance frequency and/or a change of
shape of the resonance peak(s). The two types of transmission line designs explored are
coaxial and coplanar stripline (CPS). Irrespective the design, the method outlined here offers
an equipment-undemanding, low maintenance and cost-efficient in-line early warning
system to detect (the onset of) corrosion. The additional advantage of the system is the
freedom of design as for its geometry, from coax to one embedded in printed circuit boards,
both designs with hardly any constraints on the particular dimensions. Depending on the
precise geometry, the sensor may be able to detect corrosion in tap water after just one
hour. Experimental data (recorded after 4 days) is in close agreement with simulation data
representing a 17 um homogeneous oxide layer.

This chapter is based on the article published as:

N.A. Hoog, M.J.J. Mayer, H. Miedema, R.M. Wagterveld, J. Tuinstra, M. Saakes, W.
Olthuis, A. van den Berg, Stub Resonators for Online Monitoring Early Stages of Corrosion,
Sensors and Actuators B: Chemical, Volume 202, 31 October 2014, Pages 1117-1136, ISSN
0925-4005, http://dx.doi.org/10.1016/j.snb.2014.06.026.
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5.1 Introduction

The economic cost due to corrosion can hardly be overestimated. As calculated by the
National Association of Corrosion Engineers, in the USA alone, the total cost involved in
2012 amount to above $1 trillion, no less than 6.2% of GDP [1]. Corrosion may and often
does result in failures of utilities possibly leading to dangerous situations, for example, when
occurring in the transportation sector. Apart from cost and safety, there is the issue of
sustainability. Corrosion leads to (irreversible) material losses with the corroded metals
commonly ending up in the environment [2-12]. It is exactly for all these reasons that over
the last decades technologies have been developed to detect (and eventually of course
prevent) corrosion in an as early stage as possible. Without the pretention to be complete,
currently existing technologies include: corrosion coupons, electrical resistance (ER),
inductive resistance probes, linear polarization resistance (LPR), electrochemical impedance
spectroscopy (EIS), electrochemical frequency modulation, resonance analysis,
electrochemical noise (EN), zero resistance amperometry (ZRA), potentiodynamic
polarization, thin layer activation (TLA) and gamma radiography, electrical field signature
method (EFSM), acoustic emission (AE). Apart from these direct techniques there are
several indirect technologies to measure corrosion: corrosion potential, hydrogen flux
monitoring and chemical analyses [13, 14]. Whether direct or indirect, the techniques listed
above are either intrusive or non-intrusive and off- or on-line.

Despite the diversity of existing technologies, we present an alternative that is easy to
use, low cost, and low maintenance. The sensor described here is based on transmission line
theory and classified as a quarter wave length open-ended stub resonator. For this reason, it
can be operated at high frequencies without introducing parasitic distributed inductance
and capacitance elements. This allows complex dielectric spectroscopy and analyzing
resonances over a broad frequency range. An additional advantage is that scaling of the
inner conductor not only changes the dielectric properties of the system but also affects the
effective resistance of the inner conductor. The latter effect increases with frequency
because of the skin-effect. From the design point of view we discuss two types, the coaxial
and the coplanar stripline resonator (CPS) transmission line. Both systems can be realized
using standard electronic components to obtain a (flow-through) sensor that represents the
analog of a (automated) spectrum analyzer. Both designs are expected to suit different
applications and were chosen to demonstrate the general applicability of the concept in
terms of stub resonator geometry. For instance, the coaxial type seems most appropriate
for monitoring industrial processes. The CPS design, on the other hand, can be used to test
oxidation inhibitors, to mention just one potential application. It should also be remarked
that the design can set limits to particular applications.

Stub resonators consist of an inner and outer conductor separated by a dielectric, in our
particular case a fluid. With an input signal of constant amplitude but variable frequency,
the frequency of lowest load impedance, i.e., the resonance frequency (frs) is determined.
Whereas f.s itself solely depends on the resonator length, the relative magnetic
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permeability and the dielectric permittivity of the fluid, the amplitude output at f,.; depends
on the characteristic impedance of the resonator, which, in turn, depends on material and
geometrical parameters (e.g., inner and outer conductor ratio) and fluid characteristics
(dielectric permittivity). Apart from fs and the output amplitude, the shape (e.g., width of
the resonance peak) of the amplitude-frequency or AF response depends on losses in both
conductors (e.g. skin effect), dielectric losses in the fluid (e.g., due to the conductivity of
ions present) and, finally, losses due to impedance mismatch, notably between the coaxial
transmission lines and the resonator. In two previous publications [14, 17] we showed that a
sensor based on this principle can be used to monitor the composition of the fluid that acts
as dielectric in between the two conductors. In addition, it was quite well possible to
adequately model and predict the experimentally observed response, including all the
losses.

Instead of focusing on fluid composition, here we discuss an entire different application
of stub resonators, one with the inner conductor as sensitive element and susceptible to the
formation of an oxide layer on its outer surface. This can be realized by making the entire
sensor, except the inner conductor, out of (corrosion-resistant) stainless steel. The inner
conductor, in turn, can be made out of the material to be investigated. Suppose, for
example, that a particular piece of process equipment shows susceptibility to corrosion. A
stainless steel coaxial resonator with the inner conductor made from the same material as
the equipment under investigation can be installed in the process liquid feed stream.
Corrosion results in the formation of a second dielectric surrounding the inner conductor.
Instead of a system with both conductors separated by a single dielectric (i.e., the fluid),
inner and outer conductor are now separated by two concentric layers of different
permittivity. With both conductors made of corrosion-sensitive material, the same oxidation
process will of course occur at the surface of the outer conductor as well, resulting in a
three-layer dielectric. However, as will be discussed later on also in this case will the change
in AF response predominantly determined by the corrosion layer on the inner conductor.

Fig. 1. Schematic 3D image of the coax sensor with outer conductor of diameter of D (1); inner conductor
of diameter of d (2); input and output ports for fluid flow-through (3) and tube length / (4). Note that the inner
conductor has been made visible by making the outer conductor partly transparent.

Fig. 1 shows a schematic 3D image of the coax resonator. Corrosion of the inner and/or
outer conductor will be monitored as a change in the AF (amplitude-frequency) response of
the device. In the ideal scenario, measures can be taken before actual damage has occurred
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in those parts of the process installation that are made of the same construction material as
the inner conductor of the sensor, on which corrosion was detected. So in this case, the
sensor is used as an early warning system. In case of just a corrosive inner conductor, the
sensor is simply reactivated by replacing the partly oxidized metal rod with a new one.
Indeed, an additional advantage of this design is the ease by which the inner metal rod can
be replaced. We thus developed a corrosion sensor that is easy in use and low cost in
manufacturing and operation.

5.2 Sensor description

Coaxial stub resonator

Fig. 2 shows the coaxial-type resonator implemented in a circuit consisting of a function
generator (FG) and spectrum analyzer (SA), both implemented in a HAMEG HMS3010
spectrum analyzer with tracking generator. It should be noted that the spectrum analyzer is
calibrated in dBm (dimension in power). The interconnecting transmission lines all had
characteristic impedance (Zp) of 50 Q. In order to minimize the size of the connectors, we
used connectors of the type SMA (SubMiniature version A) with a length of just 20 mm.
Note the two possible configurations of the stub resonator, closed or open, the mode
exploited in this study. Also note that the device can operate under batch or flow-through
conditions. The resonator outlined here has been described by the authors in more detail
previously [14-24].

Open (A/4) or closed (A/2)

Coaxial Stub Resonator
(RE) Outlet for a
\ B R ] flow through
Outer L —
Conductor \
—
c
Inlet for a flow o Inner Conductor
through
N /
—_— 5..._|: /
Frequency Spectrum
Generator Analyzer
(FG) (SA)
-

Fig. 2. Schematic outline of the coaxial stub resonator sensing system consisting of a function generator
(FG), a spectrum analyzer (SA) and the coaxial stub resonator (RE). The dotted inlet and outlet indicate that the
flow-through resonator can be optionally used as batch resonator.
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Table 1 gives an overview of the physical dimensions of the quarter-wave coaxial stub
resonators applied in this study, see also Fig. 1. Two sizes of inner conductor were tested
with a diameter of either 2 or 15 mm.

Table 1

Geometric parameters of the flow-through resonator. The outer and the inner conductors of the
resonator were made from stainless steel 316L and steel, respectively. Note the two different sizes of inner
conductor that were tested.

Parameter
Length, | 29:10™ (m)
Inner conductor diameter, d 2:10% or 15.10° (m)
Inner diameter of the outer conductor, D 25-10 (m)
Diameters of the fluid inlet and outlet 15-10° (m)
Conductivity of stainless steel 316L, o 1.45-10° (S-m™)
Conductivity of steel, o 6.99-10° (S-m™)

The corrosion of steel, i.e. the oxidation of iron to iron (Il) (ferrous-) and eventually to
iron (Ill) (ferric-), in the presence of water, is given by Egs. 1, 2:

2Fe+0, +2H,0 —> 2Fe(OH), (1)

4Fe(OH), +2H,0+0, — 4Fe(OH); 2)

Apart from the possible formation of Fe,0s, the hydrated ferric oxide, orange to red-
brown in color, makes up for most of the oxidation products.

The outer conductor is corrosion resistant because it has been manufactured from
stainless steel. As a result, only the inner conductor will suffer from corrosion. For now we
will assume that the oxide forms a homogeneous layer (but see Discussion). Fig. 3 gives a
schematic cross section of the coaxial stub resonator with the inner conductor covered with
an oxide layer.
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Fig. 3. Schematic cross section of the coaxial stub resonator with two dielectric layers in between inner

and outer conductor: corrosion layer (r;, orange, dielectric permittivity €;) and fluid (r,, blue, with dielectric
permittivity &,).
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Fig. 4. Schematic view of the experimental set-up consisting of the coaxial resonator (1); The presented
resonator, labeled (2) and drawn in dotted lines, indicate that the system can be extended with n
resonators, all depending on the precise aim of the particular experiment. Also indicated pumps (3, 4);
reservoir tank for tap water (5); inlet ports (6, 7) and outlet ports (8, 9).

2nd

The electrical parameters of the stub resonator are the distributed element inductance
L, resistance R, capacitance C and conductance G, see also [14, 17, 26] for detailed
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description. When these parameters are known, the behavior of the resonator can be
described in terms of AF response, using the setup shown in Fig. 1.

The effective dielectric permittivity .5 and the effective loss tangent tandes of a coaxial
resonator with multiple concentric layers of different dielectric permittivity have been
described in [14, 17] and is expressed by:

Eeff = F€r1,€r21€1n) (3)

tanéeff = f(tané,,tané,,...tand,,) (4)

In an ideal resonator without any losses, the resonance frequency f,.s of an open ended
(A/4) and closed end (A/2) resonator are given by Egs. 5a and 5b, respectively. In this special
case, the dielectric constant €, can be determined directly from Egs. 5a and 5b [17].

2n-1 c-(2n-1)
Jres = = (5a)
2% SN oY) €e€0MreMo
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(5b)

where ¢ represents the speed of light in vacuum (m/s), n the order number of f..s (Hz), /
the length of the resonator (m), u, relative magnetic permeability of the dielectric between
inner and outer conductors (-), Uy the absolute vacuum permeability (H/m), & the absolute
vacuum permittivity (F/m), and €. the relative effective dielectric constant (-).

Note that the capacitance Cin Egs. 5a and 5b is determined by the real part €. of &,:

For a lossy resonator, polarization and conductivity losses in the dielectric under
investigation, as well as resistance losses in the inner and outer conductors, must be taken
into account. A detailed model accounting for these losses, essentially based on
telegrapher's equations, is explained in [17].

In order to describe the behavior of the corrosion sensor i.e., a lossy resonator, the
model described in [17] was extended with expressions for both the effective dielectric
permittivity €. and the effective loss tangent tanéd.s of the composite dielectric consisting of
oxide metal and water.
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For a lossy dielectric, complex dielectric permittivity can be described as:

€ =Ere — JEim (6)

where €, and g, represent the real and imaginary part of &, respectively.

The effective loss tangent tandeg (-), which is a measure for the dielectric losses in the
system, is expressed by Eq. 7:

we;, + Geff

tan5eff = (7)

WE e

where €;, and o reflect the polarization losses and the conductivity losses in the
dielectric respectively. and w=2r f,.s represents the angular frequency (rad/s).

The effective conductivity oeg of the fluid volume and the oxide layer, i.e., the
composite dielectric between inner and outer conductors is a parameter hard to assess. The
difficulty is related to the extent the conductor is covered with an oxide layer. In case only a
small surface area is covered with metal oxide, o5 will be mainly determined by the fluid
conductance. In contrast, a very thin homogeneous layer of metal oxide on the inner
conductor may result in electrical isolation of the inner conductor. In this case oges will be
almost completely determined by the conductivity of the metal oxide layer. For this reason,
Oefr Was lumped into tand.s (see Eq. 7), which, in turn, was used in the model as a fitting
parameter. It is noted that lumping of g5 into tand.sis common practice [18].

€ and tand.s can also be expressed in terms of the capacitance and tangent loss of the
individual system elements:

& = Ceff / Cyacuum (8)

where Cygcuum is the capacitance of the resonator with vacuum between both
conductors.

According to [19], the effective capacitance (Cef) of a coaxial capacitor with a two-layer
dielectric is given by Egs. 9 and 10:
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-1
1 1
Cor=| —— 9
eff |:C1 CJ (9)

where C1 and C2 are the capacitances related to the corrosion layer and the fluid,
respectively, each given by:

_ 2ngpE; _ 2nggE,

! _In(rl/ro) 2 _In(rz/rl) (10)

where

€1, dielectric permittivity of an oxide layer (-);

€,, dielectric permittivity of a fluid (-);

ro, radius of the inner conductor of the resonator (m);
rq, radius of the occurred oxide layer (m);

r», inner radius of the outer conductor (m).
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Taking into account Egs. 9 - 10, &4 of a cylindrical capacitor with dielectrics €; and €; in
radial direction can be expressed by Eq. 11 [20]:

£1& In(?j
Eeff = 0 (11)
£ In(:zj + & In[:lj
1 0

Eqgs. 3-11 give a full description of the behavior of the stub resonator.
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Coplanar stripline (CPS) stub resonator

Apart from the coaxial type, we also investigated a sensor based on a coplanar stripline
transmission line, shown schematically in Fig. 5.

Frequency Spectrum I J'G
Generator Analyzer 'em ND
(FG) (SA)
i (@)
i — 0
Stub Resonator : o s wn
(RE) Bl E| R Fluid i t
3 - | o
~=d ‘E = E2(Fluid)
P8 g
N ~ &
= WE
GND ! |
~

Fig. 5. Schematic overview of the CPS used in this study. Here, | represents the length, w the width of the
signal wire, h the substrate thickness, t the width of ground signal, €;rs the dielectric permittivity of
substrate, €;/muiq) the dielectric permittivity of the fluid. On the left panel, the fluid level is indicated by arrows.

\

=)

Voltmeter Current Source

Corrosive
substance

Outer conductor
Inner conductor

Outer conductor
CPS resonator

6 S
I
I

Fig. 6. Schematic representation of a test cell for a CPS-based transmission line. The inner and outer
conductor functions as working and auxiliary electrode, respectively. Corrosion tests can be performed with
the sensor either fully or partly immersed into the electrolyte solution as well as during constant or periodic
exposure to the corrosive electrolyte.
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Analogous to the coaxial stub resonator, the behavior of the CPS resonator is defined by
its electrical parameters: the distributed element inductance L, resistance R, capacitance C
and conductance G [27, 28]. Knowing these parameters allows accurate modeling of its AF
response [17].

Table 2 gives an overview of the relevant dimensions of the CPS resonator used in this
study. As a dielectric substrate, laminated epoxy resin fiberglass composite sheets (FR4)
were used.

Table 2

Geometric parameters of the CPS resonator. The outer and the inner conductor were made from Sn-Ag
alloy.

Parameter
Length, / 34-107 (m)
Substrate thickness, h 1.93:10%  (m)
Width of the signal wire, w 7.60-10*  (m)
Width of ground wire, t 2.2:10° (m)
Effective dielectric permittivity of substrate (FR4), &, 4.8 (-)
Conductivity of tin, o 8.7-10° (S-m™)

Both the inner and outer conductor of the CPS were made of tin-silver or Sn-Ag alloy,
with tin (Sn) being the predominant surface-active component [35]. In order to study the
effect of oxidation we applied a 10 mA dc-current to accelerate the corrosion process. Given
a surface area of the (working) inner electrode of 1 cm?, the current density was 10 mA/cm?.
The dc-current induced corrosion test experiments were performed in a sodium hydroxide
(NaOH) solution, a highly corrosive condition for Sn. Due to a dissolution-precipitation
mechanism, a thin layer of either stannous hydroxide Sn(OH), and/or oxide SnO develops on
the electrode surface. At higher anodic potentials this layer of Sn(OH), and SnO is further
oxidized to Sn(OH)4 and SnO,. Apart from the oxidation of Sn, oxidation of Ag and H,0 might
occur as well.

The resonator’s AF response is also sensitive to the ionic species present in the solution,
with a high ionic conductivity causing increased dielectric losses. Calculation of the change
in solution composition is however not feasible because the relative contributions of the
oxidation of Sn, Ag and H,0 remain unknown. But because oxidation will affect the ionic
species present in the solution, the change in AF response due to dc-current induced
oxidation needs to be separated from the one due to dc-current induced change in solution
composition. We therefore worked along the following protocol:
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1. Perform the control (non-corroded conductor) according to Fig. 6 and in
MilliQ water.

2. Mount the CPS resonator into a vessel containing 1 liter 2 mM NaOH.

3. Apply a dc-current of 10 mA for one hour using the circuit of Fig. 6 and a
Ag/AgCl reference electrode.

4. Wash the specimen with demineralized water and dry under laboratory
conditions.

5. Repeat the measurement of step 1 but with (partly) corroded conductor.

6. Repeat steps (2-5) for 2 and 3 hours, respectively.

5.3 Material and Methods

The conductivity of the solutions was measured using a pH/Cond 340i-WTW electrode
(VWR).

The Ag/AgCl reference electrode used for the dc-current induced corrosion experiments
was of the type +0.200 V vs. NHE (ProSense QiS, The Netherlands).

Scanning electron microscopy (SEM) was used to characterize and visualize the surface
of the inner and/or outer conductors.

(g}
—
(]
+—
Q.
©
<
()

Chemicals were purchased from VWR International BVBA.

5.4 Results

Coaxial resonator

All experiments with the (flow-through) coaxial resonator were performed using tap
water with conductivity of 545 10" S/m (compared to 10 S/m of milliQ water), and at a
temperature of 18+0.5 °C. Fig. 7 shows a typical series of AF responses indicating corrosion
of the inner conductor over a time period of four days using an inner conductor diameter of
either 2 mm (A) or 15 mm (B). The differences in the AF responses are mainly caused by
larger dielectric losses when using the 15 mm inner conductor (larger conductor surface
area, shorter distance between both conductors). For that reason, all further experiments
were performed with inner conductors of 2 mm. As shown by Fig. 7A, an effect is already
observable after one hour of operation (red curve), notably at higher frequencies. Another
conclusion arising from Fig. 7A is that, in general, effects of corrosion are more pronounced
at higher frequencies. There are two reasons for this. Firstly, according to Eg. 5 and given a
certain change in g, the shift of fres (Afres) is proportional to ¢(2n-1)/41, implying a larger shift
at higher n, i.e., at higher resonance frequencies. Secondly, as for the amplitude, e.g. the
skin effect is more dominant at higher frequencies.
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Fig. 7. AF plots in response to corrosion over a time period of 4 days using an inner conductor of 2 mm (A)
or 15 mm (B). (1000 point/scan).

These first four resonances of Fig. 7A are shown in more detail in Fig. 8. For comparison,
Table 3 shows results obtained after fitting the experimental data (red dots) of Fig. 8 to Eq. 2
in [17] and/or Egs. 1-12 in [22] and Egs. 3-11 presented here, using the Isgcurvefit option in
MATLAB (2012B). This fitting procedure renders the thicknesses of the oxide layer and
tandeg, both at each day of the experiment (see Eq. 7). Table 3 confirms this assumption in
that the highest agreement between experimental and simulation data is, in general,
observed at the minimum of the curves. Table 3 further suggests that Fig. 7A has been
recorded (after four days) in the presence of an oxide layer with a thickness of 17 um (see
also Discussion).
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Fig. 8. The experimentally obtained first four resonances of Fig. 7A shown at higher resolution, i.e., in a

frequency range between 5MHz-250MHz.

Table 3

Simulations of the 3™ resonance shown in Fig. 8 and Fig. 10, with the radius r of an oxide layer and the
effective loss tangent tand.y, as fitting parameters. Drawn curves all refer to simulation data whereas the red

dots represent experimental data obtained with the resonator used for Fig. 7A and Fig. 8.
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Table 3 (Continued)
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These first four resonances shown in Fig. 8 were used to get a clearer picture of the
observed AF responses. We therefore plotted the resonance frequency and amplitude as a
function of time. The result is shown in Fig. 9. Even though the precise shape differs, the
trend of resonance frequency as well as amplitude is essentially the same (perhaps except
for the amplitude plot of the first resonance). This similarity is an important observation as
it strengthens the hypothesis for the shift of each resonance, i.e., the formation of a
corroded oxide layer on the inner conductor’s surface.

t d d th
1°* resonance 2" resonance 3" resonance 4™ resonance
T g 9 T 158 T 219
S 28 =2 S 152 _ S 216
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Fig. 9. Changes of resonance frequency f..s (top row) and amplitude (bottom row) during 4 days and
plotted separately for the first 4 resonances.

At higher frequencies we observed an increased dispersion of the signal. Fig. 9
demonstrates this phenomenon, showing the correlation between the shift in resonance
frequency and in amplitude, plotted for the first four resonances and each monitored over a
time frame of four days. Whereas the data points for the first two resonance frequencies
almost overlap, those of the 3" and 4% clearly start to diverge, an effect due to enhanced
dielectric losses.

Importantly, Fig. 9 is based on a triple set of data, also measurements were repeated 10
times but with resonator tubes of different length (0.3, 0.61 or 1.01 m), different outer
diameter (20 or 70 mm) and an inner conductor diameter of 1.5, 15 or 60 mm. (see
Supplementary Information Figs. A.2-A.4). Despite this difference in experimental set up,
the trend in the data was always the same (i.e, as shown in Fig. 9), an observation that
makes us conclude that the method is reproducible
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At low frequencies, the AF response is mainly determined by the real part of €, in Eq. 6
and the conductivity of the dielectric. Polarization losses and conductivity losses of the
solution both increase the relative contribution of the imaginary part of & in Eq. 6 with
increasing frequency [14, 17]. Fig. 10 shows the 3" resonance over time at higher
resolution. After an initial shift in the direction of lower frequencies after just one hour (red
curve), the response starts to shift in the opposite direction, i.e. to higher frequencies.
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Fig. 10. AF plot of 3" resonance frequency showing the shift in frequency and amplitude caused by
corrosion during 1, 2, 3 or 4 days.
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Fig. 11. AF response of 3" resonance frequency after 1, 2 and 24 hrs of corrosion shown at higher
resolution.
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We investigated this phenomenon in more detail and measured the AF response after
1, 2 and 24 hrs of corrosion (Fig. 11). We now observed a shift to the left during the first two
hours followed by one to the right after 24 hrs.

To correlate, at least at the qualitative level, the shown changes in AF response with
visual corrosion effects, we also obtained SEM pictures of the surface of the inner conductor
with corrosion progressing over time (Fig. 12). Whereas we do see spots of corrosion
appearing at the surface during the first two hours (A, B), it is only after 24 hrs that the
surface is completely covered with oxide (D). In addition, SEM pictures were made from
cross sections of the inner conductor, with estimated thicknesses of the observed oxide

layer covering its surface (Fig. 13).
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Fig. 12. SEM images showing the non-corroded (A) and corroded inner conductor surface after 1 hr (B), 2
hrs (C) and 24 hrs (D).
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Fig. 13. SEM images showing cross sections the inner conductor during 4 days of experiment. Row A: 1%
day, after 1 hr; Row B: 2" day; Row C: 3" day and Row D: 4" day. In both panels, the oxide layer at the outer
surface is clearly visible. Note the difference in scale bars used, 500 um in the left panels versus 100 um in the
right panels. Left and right panel in each row were obtained from the same specimen.
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The SEM images shown in Fig. 13 were analyzed using open source software IMAGE)
(image processing and analysis in java) [46], resulting in estimated oxide layer thicknesses
summarized in Table 4.

Table 4

Estimated thickness of the developed oxide layers over time obtained from the SEM images shown in Fig.
14. Each thickness has been based on three independent measurements on the same specimen.

Ne Day
measurement
2 3 4
1 12 (um) 27 (pum) 62 (um)
2 7 (um) 22 (pm) 30 (pm)
3 5 (um) 25 (um) 16 (um)

It is worth to mention that the stub resonator is much more sensitive for corrosion of
the inner conductor surface as compared to the outer conductor surface. The converging of
electric field lines near a surface depends on the curvature of the particular surface. It is for
this reason that the electric field near the inner conductor is stronger than that near the
outer conductor surface. This effect of geometry becomes apparent also when calculating
the change in €. upon the formation of an oxide layer on either the inner or outer
conductor surface. Based on the resonator geometry listed in Table 1, covering the inner
conductor with a 17 pm layer of metal oxide (¢=2.4) lowers, according to Eq. 11, . from
72.47 to 66.36. Repeating this calculation but for an oxide layer of the same thickness on
the outer conductor surface hardly affects e at all as it lowers €. from 72.47 to just 72.46.
Note also that the 17 um oxide layer on the outer conductor surface represents a much
larger metal oxide volume than a similar layer on the surface of the inner conductor,
thereby emphasizing the much higher sensitivity of the inner conductor to corrosion effects.

The difference in sensitivity of both conductors is also shown graphically in Fig. 14,
representing simulations of AF responses in the absence and presence of a 17 um oxide
layer on the surface of either the inner or outer conductor.
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Fig. 14. Simulations of the 3" resonance shown in Fig. 8 and Fig. 11 of the manuscript.
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Fig. 15. Simulations of the 3" resonance shown in Fig. 8 and Fig. 10 for different dimensions of the inner

conductor.

The oxide layer forms and functions as an insulating layer for the conductor. It is also for
this reason that the sensor is much more sensitive to the formation of the first oxide layer

compared to the subsequent progressively increasing layer thickness over time.

Apart from an increase in thickness, over time the oxide layer becomes more porous
and with that more brittle. As a result and promoted by flowing through the resonator,
oxide particles may actually detach from the inner conductor surface thereby reducing its
diameter. Alternatively, the corrosion product may also leave the resonator as metal ions
instead of as metal oxide particles, thereby reducing its inner conductor diameter as well. As
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the AF response is a function of the diameter of the inner conductor, the thinning of the
inner conductor and eventually washing out of oxide products affects the resonator
behavior. Fig. 15 simulates this effect by reducing the inner conductor diameter from 2.0 to
1.5 mm.

The high sensitivity of the inner conductor to corrosion is also evident when replacing
this conductor with one made of stainless steel, rendering an inert, corrosion resistant
electrode (Fig. 16). Compared to Fig. 8, the AF response hardly changes over a period of 4
days.

6 ’\
15t day
\/ 1t dayin 1 hr
-10 —— 2nd gay
-12 3rd day

Amplitude (dBm)

— gth day

50 100 150 200 250
Frequency (MHz)

Fig. 16. AF response of a resonator with a stainless steel inner conductor, in the frequency range of
5MHz-250MHz.

Coplanar stripline (CPS) stub resonator

The working principle of the CPS stub resonator is essentially the same as the one of the
coaxial stub resonator, it just exploits a different geometry. Fig. 17 shows the AF-response
of the 1% resonance with the CPS (completely) immersed in 2 mM NaOH (533 10 S/m),
while applying a dc-current current of 10 mA. During these dc-current induced corrosion
experiments, the potential difference between the inner conductor and the Ag/AgCl
reference electrode changed from -0.537 V at the start to a value in the range of 3.75 V -
4.19 V after applying dc-current for 3 hrs. The variability of the monitored voltage difference
after three hours may reflect differences in oxide layer composition (see Discussion).
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Fig. 17. AF plots of the CPS resonator showing the shift in resonance frequency and amplitude of the 1%

resonance due to the effect of 3 hrs of corrosion, induced by a dc-current of 10 mA (1000 point/scan).
Measurements were performed in the presence of 2 mM NaOH.
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Fig. 18. AF plots of the CPS resonator showing the shift in resonance frequency and amplitude of the 1%
resonance due to the effect of 3 hrs of corrosion, induced by a dc-current of 10 mA (1000 point/scan).
Measurements were performed in MilliQ, i.e., in the absence of NaOH.
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The result shows the response of a single inner conductor but recorded after different
times of exposure to NaOH, for up to three hours. Both the resonance frequency f,.s and the
amplitude were affected by corrosion. As already remarked, dc-current induced corrosion
will change the composition of the solution. Therefore, the response shown in Fig. 17
represents both the effect due to surface corrosion and change in solution composition. In
order to isolate the response caused by the oxidation of the surface, we repeated the
experiment but following the protocol outlined in Section 2 of Paragraph “Coplanar stripline
(CPS) stub resonator”. While corrosion was performed in 2 mM NaOH, the actual
measurement was recorded in MilliQ (after carefully rinsing the CPS with MilliQ). The result
is show in Fig. 18. Compared to Fig. 17, the effect of corrosion of the AF response is more
profound. The reason is the rather high background of ionic conductance in the experiment
of Fig. 17 due to the presence of 2 mM NaOH. The enhanced losses resulting from this ionic
effect predominantly shapes the AF response and partly masks the effect due to surface
corrosion. This is also the reason that we show the 1% instead of the 3™ resonance (as with
the coaxial type) because the response is so much more sensitive to losses at higher
frequencies. The reason for the almost identical response after 2 and 3 hours is twofold.
Firstly, once an oxide layer has been formed, the sensor becomes less sensitive to further
oxide formation. Secondly, the (accelerated) oxidation dissolves the inner conductor and by
that increases the relative contribution of the oxidation of the outer conductor, also
resulting in a compromised sensitivity.

As we did for the coax resonator, the CPS inner conductor surface was also
characterized by SEM (Fig. 19). Because the outer conductor of the CPS resonator is made
from tin as well, this conductor is also susceptible to oxidation. We therefore also examined
samples of the outer conductor with SEM and examples are shown in Fig. 20. After 2 hrs
(Fig. 20B), the outer conductor suffered less from oxidation compared to the inner
conductor shown in Fig. 19C.

123

(g}
—
(]
+—
Q.
©
<
()




Chapter 5

18k

18kU

(@)
>
(<))
©
=+
(1)
=
%)

1eku

Fig. 19. SEM images showing non-corroded (A) and corroded parts of the inner conductor of the CPS
resonator after 1 (B), 2 (C) and 3 hrs (D) of oxidation.

Fig. 20. SEM images showing non-corroded (A) and corroded parts of the outer conductor of the CPS
resonator after 2 hrs (B) of oxidation.
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5.5 Discussion

In this study we explored the possibility to use a stub resonator-based sensor for the
detection of metal corrosion. These first results are encouraging but a number of questions
remains to be answered. For example, in case of the coaxial resonator, how to explain the
initial shift of the AF response to the left, followed by the one to the right (Fig. 10, Fig. 11).
We hypothesize that even though corrosion occurs during the first two hours already, the
effects remain limited to the appearance of isolated spots of oxide on the inner conductor’s
surface. When corrosion progresses the surface becomes covered by a concentric oxide
layer completely isolating the conductor resulting in a significant shift of minimum in the AF
plot to higher frequencies. Remains the question what causes the initial shift to lower
frequencies? We have two possible explanations. The first one assumes the presence of
small air bubbles on the (rough) metal surface prior to immersing the conductor in solution.
Upon immersion, these air bubbles will (partly) dissolve or escape into the bulk solution
thereby replacing a dielectric of low permittivity (air) for one of much higher permittivity
(water). As a result, the resonance frequency will shift to lower frequencies, i.e., to the left.
The next explanation offers an answer in quite different direction. The presence of (non-
conducting) metal oxide spots intruding the conductor surface will make the total current
pathway through the conductor longer resulting in an increase of the resonator inductance
[29, 31]. The larger surface area due to increased roughness leads to a higher resonator
capacitance [29, 31]. Both the increase of the resonator inductance and the resonator
capacitance will shift the (resonant frequencies in the) AF plot to the left i.e., towards lower
frequencies. Finally, the increased roughness also affects the resistance of the inner
conductor. All effects mentioned above increase with increasing frequency, implying
changes in AF response can be used to recognize pitting corrosion. However, studying
pitting corrosion was considered to be beyond the scope of this study and the authors did
not (yet) explore this potential application in more detail.

Even though we made a distinction between steel and stainless steel, suggesting the
latter to be corrosion resistant, it should be realized that the main difference between the
two types of steel refers to the rate they corrode. Corrosion rates depend on a number of
parameters including temperature, composition of the corrosive medium the metal is
exposed to and the type of metal itself. For example, according to [32], the corrosion rate of
stainless steel at room temperatue and in 5 g/l of NaCl is 1.85 10 mpy. The corrosion rate
of stainless steel type 316 L in drinking water and at room temperature is reported to be
<0.1 mpy [33].

In comparison, the corrosion rate of steel can be as high as 40 mpy [34], i.e., a value 400
times higher than the one for stainless steel.

Correlation of the oxide layer thickness with the (change in) AF response requires
knowledge of the layer thickness and dielectric permittivity of the oxide layer and the
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thickness of this layer. Experimental determination of the layer thickness is challenging since
corrosion forms all but a homogeneous layer.

A further complication arises from the (unknown) composition of the oxide layer. Even
though Fe(OH)3; might be the predominant form with a dielectric permittivity in the range of
1.5-2.3 [39, 40], Fe(OH),, FesHOg-4H,0, Fe30,4, FeO, polymorphs of either FeOOH or Fe,03
and any combination between them, may form as well. Reported dielectric permittivity
values for these mentioned oxidation products range from 12.7-14.2 to 24 [41] to a value as
high as 32.8 [42].

Despite the difficulty to establish the aforementioned correlation we did compare
experimental results with model predictions. As already remarked, effects are more
enhanced at higher resonances. To do so we assumed the inner conductor covered with a
homogenous oxide layer consisting exclusively of Fe(OH); with an & value of 2.3. By
minimizing the difference between measured (26.97 MHz) and calculated resonance
frequency of the 1° resonance with the layer thickness as free fitting parameter, we obtain
an oxide layer thickness of 17 um, a value close to the one derived by eye from Table 3. It
remains hard to judge to what extent this estimate deviates from its actual (effective) value
but according to the SEM picture of Fig. 13 such value seems quite realistic. Because of the
heterogeneity of the oxide layer, any theoretical description based on homogenous layers is
at least incomplete. This is true even more because prior to the actual recording standard
procedure holds to sandpaper the inner conductor surface in order to remove the
protection layer. This treatment improves surface roughness and affects surface resistance
in a way simulation cannot account for, implying a further deviation between simulated and
experimental data.

It is noted that the sensor is most sensitive for the first thin layer of metal oxide formed
on the inner conductor, even if this metal oxide layer is not homogeneously distributed over
the inner conductor surface. This makes the sensor concept feasible to detect corrosion at
an early stage. Once the inner conductor is completely covered with a homogeneous layer
of metal oxide, the signal shift in the AF plot per micron formed metal oxide layer thickness
will decrease. This feature of the sensor is an advantage to detect early stages of corrosion
but makes the sensor less sensitive for recording progressive corrosion.

The sensor described here monitors processes at a metal surface, notably that of the
inner conductor. Apart from such surface effects, the behavior of the stub resonator
depends on the dielectric properties of the fluid located in between inner and outer
conductor as well as the geometry of the system. Attempts to include temperature [see 43,
44] and the conductivity of the fluid under investigation (now lumped in tandy) in the
model used for the AF response simulations by the authors look most promising and are
close to finalization (results not shown). Noteworthy, a relatively larger conductor surface
will not per se make the device more sensitive. According to Egs. 9-11, a larger diameter
lowers the sensitivity. Also, the relative contribution of losses caused by the conductivity of
the dielectric will increase because of the larger electrode surface. In addition, a larger inner
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diameter will decrease the distance between both conductors, thereby increasing
conductivity losses in the solution. Another argument deals with the necessity to keep the
resonator impedance matched. Changing the diameter of the (not yet corroded) inner
conductor from 2 to 15 mm reduced the impedance of the resonator; when filled with tap
water from 19.1 to 3.5 Q. As a result and due to significantly increased mismatch-related
losses the behavior of the resonator totally changed, notably at higher frequencies (Fig. 7).
On the other hand, reducing the diameter of the inner conductor increases the
characteristic impedance Z; of the system, which at Z; values close to 100 Q loses its ability
to resonate (see also Appendix C and the Supplementary Information to the Chapter 2).

It is noted that the anode / cathode area ratio is an important factor in determining the
corrosion rate and has an influence on the AF-response of the resonator. Therefore, in a
real-life application, the inner conductor / outer conductor surface area ratio should reflect
the actual anode / cathode surface area ratio, resulting in a relatively closer estimate of
corrosion onset. However, it should be taken into account that changes in resonator
geometry will result in changes of the characteristic impedance of the resonator which
should be close to 50 Q.

The sensor described here fulfills two (economic) requirements valid in general for all
types of (ideal) sensors, i.e., easy to use and inexpensive. This is the case, for instance, if
using a coaxial resonator of relatively large dimensions. Other advantages are: the sensor
operates on - line and can be exposed to “real life process conditions” because it can be
applied to, for instance, the interior of industrial piping systems. In addition, the sensitivity
of the sensor can be adjusted by fine-tuning the inner and outer conductor surface area
ratio, with, for instance, the inner conductor susceptible to corrosion but the outer
conductor chemically inert. Another advantage of the stub resonator is that it responses to
a number of different parameters affected by corrosion: skin effect, resonance frequency
and dielectric losses.

In this study all results has been represented by AF responses. A Nyquist plot offers an
alternative representation of the dielectric properties of a system showing the real and
imaginary part of the input impedance. (see for an example Fig. A.1 in Supplementary
Information). AF- and Nyquist plots are equivalent in terms of the information they render
about the dielectric properties of the system under investigation. The reason we opted for
AF plots is, first, that they relate more directly to the behavior of the resonator and,
secondly, that they can be measured in a straightforward way, resulting in a practical and
cost efficient sensor, i.e., a network analyzer for AF plots versus a more expensive
impedance analyzer or network analyzer required for Nyquist representation. Further
suggestions for cost reduction are given in the Supplementary Information.

According to [47, 48], for a non-ideal capacitor, the constant phase element Q (CPE) is a
very helpful parameter for fitting experimental impedance data, even more so because it
can be represented in terms of an equivalent electrical circuit. CPE behavior is generally
attributed to distributed surface reactivity, surface inhomogeneity, roughness or fractal
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geometry, electrode porosity, and to current and potential distributions associated with
electrode geometry. Furthermore, observations on different types of diffusing species and
electrode materials show that, in contrast to an ideal capacitance, the diffusive response of
an non-ideal capacitance shows frequency dispersion in its low frequency tail, usually in the
form of a CPE.

The model described in detail in [22] and applied in the present study accounts for
dispersion of ., including the dispersion arising in the dielectric lossy part of the system.
The real part €, of €. can be considered to represent the behavior of an ideal capacitance,
implying a f..s entirely defined by €, and not €, (see Eq. 5). For a non-ideal capacitance, i.e.,
for all real-life systems, f.s is defined by €;,, 0 and R as well.

As for potential application, we foresee most opportunities for the sensor as an early
warning system where maintenance can be limited by replacing the inner conductor (just a
metal rod) from time to time. After replacement, the corroded rod can easily be visually
inspected for further detail. Depending on its precise application, the material of this metal
rod can be adjusted (as long the permittivity of the particular oxide is known). Because of its
relatively large dimensions, the metal rod can be produced in a cost effective and
reproducible way. Another field of application can be a platform technology to test, for
example, anti-corrosive compounds or other type of compounds that need to be tested for
their dielectric properties. To do so, the (inner) conductor can be coated with an anti-
corrosive compound. The rate at which the oxidation process proceeds upon dc-current
application, compared to the resonator with uncoated electrodes, is a direct measure for
the effectiveness of the anti-corrosive.

5.6 Concluding remarks

The results presented here are a first step towards the development of a stub resonator
as an early warning system for the detection of corrosion. Future research will focus on a
better understanding of the correlation between oxidation and the observed AF response.
This is true even more for resonators with conductors made of alloys, implying more
complex oxidation processes and kinetics. A related question still to be answered is, does
passivation occur and if so how does it influence the AF response? The ultimate goal is to
develop a sensor that monitors the rate of corrosion rather than one that just measures
whether or not corrosion actually has happened.

Despite all the work still needed to come to the sensor outlined above, we do believe
that compare to other currently existing technologies the stub resonator described in this
study combines most of the advantages. For one thing, most of the techniques listed in the
Introduction are intrusive and offline. The few techniques that are non-intrusive and on -
line are either difficult to implement or require skilled personnel, implying higher
operational cost.
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5.7 Conclusions

The feasibility of using a flow-through coaxial stub resonator to detect the onset of
corrosion was demonstrated for the corrosion of a steel inner conductor in tap water.
Experimental data recorded during 4 days were in good agreement with model simulation
data representing a 17 um homogeneous oxide layer.

A coplanar stripline i.e., a 2 dimensional analog of the coaxial stub resonator was shown
to successfully record the dc-current induced corrosion of a Sn/Ag alloy in water.

The large degree of freedom in sensor geometry design of transmission line resonators
opens possibilities to operate the sensor in-line at “real life process conditions”, such as the
interior of industrial piping systems. This feature, combined with limited maintenance of the
system (e.g., replacing a metal inner conductor rod from time to time) opens possibilities to
develop the sensor system to an early warning system.
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6.0 Supplementary Information

Appendix A
Nyquist representation

40,
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Fig. A.1. Nyquist plot calculated for the coaxial-type of resonator used for Figs. 7A and 8, in the absence
(blue) or presence (red) of an oxide layer with an (assumed) thickness of 15 um. Clearly visible are three sets of
semicircles, from right to left, corresponding to the first three resonances shown in Figs. 7A and 8.

Appendix B

Here we demonstrate an example of the MATLAB code and data file to realize the
fitting of the radius of the oxide layer, r and effective loss tangent tand.g from the measured
output voltage V.

Main program for parameter estimation for coaxial resonator:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

clearvars

format longE

load dayone.txt % load the file with data of the day of experiment
f=dayone(:,1); % Load experimental data; frequency
amplitude=dayone(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

plot(f/1e+6, amplitude, 'or')

hold on

x0 =1[0.010];

ya0 = corr_coax_resonator_main(x0,f);

% % - Plot initial values

% hold on;

% plot(f,ya0,'--m")

%-Boundary conditions

LB =[0.01 0]; % Lower bounds

UB = [1 1le-4]; %Upper bounds
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% -Solving nonlinear least-squares curve fitting
[x,resnorm] = Isqcurvefit('corr_coax_resonator_main',x0,f,amplitude, LB, UB)
ya = corr_coax_resonator_main(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");
grid on

hold on

Function evaluates the model the amplitude-frequency response of coaxial transmission
line type resonators filled with corroded inner conductor:

function F = corr_coax_resonator_main(x,f)

h=0.267+0.029; % the hgth of the coaxial resonator, [m]

h_polymer=0.042; % the hgth of the layer of the polymer layer, [m]

db=25e-3; % diameter of the resonator;

Vt=pi*h*db”2/4; %volume of the empty resonator [m"3]

f_polymer=(pi*h_polymer*db”2/4)/Vt %volume fraction of the polymer layer [m”3]
f_feed_t=1-f_polymer %volume fraction of the fluid [m”3]

e_polymer=2.2 % dielectric constant of the polymer layer

r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m]

r0 = (2e-3)/2; %radius of the inner conductor of the resonator, [m]

Erl = 2.4; %dielectric permittivity of an oxide layer, [-]

Er2 =80; % dielectric permittivity of a fluid substrate, [-]

Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

e = 8.854e-12; % vacuum permeability [H/m]

u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]

r1=r0+x(2); %radius of the occurred oxide layer (m);

c=3*1e+8; % speed of light in vacuum, [m/s]

% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F/m]
C1=2*pi*e*Er1/(log(r1/r0))

% capacitance of the open ended coaxial stub resonator, contains a fluid, [F/m]
C2=2*pi*e*Er2/(log(r2/r1))

% total capacitance of the open ended coaxial stub resonator, [F/m]

C=1/(1/C1+1/C2)

% inductance of the open ended coaxial stub resonator, [H/m]

L= ((u/(pi*2))*log(r2/r0))

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric, [H/m]
sigma_stainless_steel=7.7e+6;%conductance of the metal applied for outer conductor (stainless steel),
[1/(Ohm*m)]

sigma_steel=6.99e+6;%conductance of the metal applied for inner conductor ( steel), [1/(Ohm*m)]
Eeff _coax=(Erl1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]

sigma_steel=7.7e+6;%conductance of the metal for the outer conductor(stainless steel) [1/(Ohm*m)]
Eeff=Eeff_coax*(f_feed_t)+e_polymer*f_polymer

E= Eeff * 1/(4*pi*1e-7*c*c); % vacuum permeability [H/m]

sigma_eff=0; % effective conductivity of the system, [S/m]

vin=120e-3; %input voltage supplied by the function generator, [V]

omega = 2*pi*f;% angular frequency, [rad/s]
Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depthl=sqrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth
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skin_depth2=sqrt(2./(omega.*u.*sigma_steel));%skin_depth

Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator
Rs2=1./(sigma_steel.*skin_depth2);% surface resistivity of the inner conductor of the resonator
R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavehgth.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*h);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance

Appendix C

Decreasing the inner conductor diameter increases the characteristic impedance Z. of
the system. At values close to 100 Q the system loses its ability to resonate, as shown in Fig.
C. 1.

—Zc=17.8 Ohm
30 --Zc=1.7 Ohm
T ~2c=99.8 Ohm

Amplitude (dBm)
)

-4f20 13IO 1¢II-O 150 1(;30 17‘0 18IO
Frequency (MHz)

Fig. C.1. Simulations of the 3" resonance shown in Fig. 8 and 11 of the manuscript by changing the
diameter of the inner conductor from 2 mm (original value, pink) to 20 mm (green) and 0.02 mm (blue),
respectively.

Mathlab code for the simulations in Fig. C.1

% INNER CONDUCTOR_Day_1_2mm
format longE

h=0.267+0.029; % the length of the coaxial resonator
h_polymer=0.042; % the length of the layer of the polymer layer [m]

db=25e-3; % diameter of the resonator;

Vt=pi*h*db”2/4; %volume of the empty resonator [m~3]
Vt_polymer=pi*h_polymer*db”2/4 %volume of the polymer layer [m"3]
f_polymer=(pi*h_polymer*db”2/4)/Vt %volume fraction of the polymer layer [m”3]
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Vt_feed=Vt-Vt_polymer %volume of the resonator with the polymer layer [m”3]

f feed=Vt_feed/Vt

f_feed_t=1-f _polymer

e_polymer=2.2 % dielectric constant of the polymer layer

len =0.267+0.029; %the length of the coaxial resonator, [m];

r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m];

r0 = (2e-3)/2; %radius of the inner conductor of the resonator, [m];

Erl = 2.4; %dielectric permittivity of an oxide layer, [-];

Er2 =80; % dielectric permittivity of a fluid substrate, [-],

Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
e = 8.854e-12; % vacuum permeability [H/m]

u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]
r1=r0+8.202735219555178e-06; %radius of the occurred oxide layer (m);

c=3*1e+8; % speed of light in vacuum, [m/s]

% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F]
C1=2*pi*e*Er1/(log(r1/r0))

% capacitance of the open ended coaxial stub resonator, contains a fluid, [F]
C2=2*pi*e*Er2/(log(r2/r1))

% total capacitance of the open ended coaxial stub resonator, [F]

C=1/(1/C1+1/C2)

% _____________________________

% capacitance of the open ended coaxial stub resonator, contains air, [F]
Cair=2*pi*e/(log(r2/r0))

%Double check of the effective dielectric permittivity of the system
Dielectric_permittivity=C/Cair

% inductance of the open ended coaxial stub resonator, [H]

L = ((u/(pi*2))*log(r2/r0))

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
u = Ur*4*pi*1e-7; % magnetic permeability of the dielectric, [H/m]
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sigma_feed=515e-4;%conductivity of a fluid between inner and outer conductors, [S/m]
sigma_stainless_steel=7.7e+6;%conductance of the metal applied for outer conductor (stainless steel),
[1/(Ohm*m)]
sigma_steel=6.99e+6;%conductance of the metal applied for inner conductor ( steel), [1/(Ohm*m)]
sigma_oxide=1e-4;%conductivity of an oxide layer, Reference [17] in the manuscript
Eeff_coax=(Er1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]

eps2=Eeff_coax
sigma_polymer=1.41e-7%conductivity of polymer layer
sigma_steel=7.7e+6;%conductance of the metal for the outer conductor(stainless steel) [1/(Ohm*m)]

Eeff=Eeff_coax*(f_feed_t)+e_polymer*f_polymer

E= Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]
Vres=pi*r222*len

Voxide=pi*rir2*len
sigma_eff_main=(sigma_oxide*Voxide+sigma_feed*(Vres-Voxide))/Vres
sigma_eff=sigma_eff _main*f_feed_t+sigma_polymer*f_polymer;
check_1=f feed_t+f_polymer

% sigma_eff2= (sigma_feed*log(r2/r1) + sigma_oxide*log(r1/r0))/(log(r2/r0))
% Check volumes fractions

%vl=log(r2/r1)

%v2=log(r1/r0)

%v=(v1+v2)/(log(r2/r0))

vin=120e-3; %input voltage supplied by the function generator, [V]
f=120E+06:10000:180E+06;

omega = 2*pi*f;% angular frequency, [rad/s]
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tg=1.168018964411114e-01

Eim=((omega.*E.*tg)-sigma_eff)./omega;%imaginary part of complex dielctric permittivity

skin_depth1=sqrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth

skin_depth2=sqrt(2./(omega.*u.*sigma_steel));%skin_depth

Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator

Rs2=1./(sigma_steel.*skin_depth2);% surface resistivity of the inner conductor of the resonator

R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]

G=(omega.*Eim+sigma_feed)./(omega.*E).¥*omega.*C;%distributed element conductance of the resonator

[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];

Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =

omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]

Zcl=Zc

Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]

vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the

recorded voltage by the spectrum analyzer [V]

vout =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt

and the underlying assumption of a 50 Ohm load resistance

hF = figure

hA = axes

set(hA, 'XGrid', 'off', 'YGrid', 'on')

hold on

set(0,'DefaultTextFontSize',36,'DefaultTextFontName','Times New Roman', 'DefaultTextFontWeight', 'bold');
%- See the Supplementary Information

load dayone.txt % load the file

MHz=dayone(:,1); % Load experimental data; frequency

CH1=dayone(:,2); % Load experimental data; amplitude

frequency=MHz;

amplitude=CH1;

plot(frequency,amplitude,'LineStyle','none','Marker',".!,'MarkerEdgeColor','r', 'MarkerSize',40)

hold on

plot(f/1e+6,vout, 'm', 'LineWidth',3);

xlabel('Frequency, (MHz)','fontsize',42,'fontweight’,'b');

ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b');

hold on

% INNER CONDUCTOR_Day_1_20mm

format longE

h=0.267+0.029; % the length of the coaxial resonator

h_polymer=0.042; % the length of the layer of the polymer layer [m]

db=25e-3; % diameter of the resonator;

Vt=pi*h*db”2/4; %volume of the empty resonator [m"3]

Vt_polymer=pi*h_polymer*db”2/4 %volume of the polymer layer [mA3]

f_polymer=(pi*h_polymer*db”2/4)/Vt %volume fraction of the polymer layer [m”3]

Vit_feed=Vt-Vt_polymer %volume of the resonator with the polymer layer [m”3]

f feed=Vt_feed/Vt

f feed_t=1-f polymer

e_polymer=2.2 % dielectric constant of the polymer layer

len =0.267+0.029; %the length of the coaxial resonator, [m];

r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m];

r0 = (20e-3)/2; %radius of the inner conductor of the resonator, [m];

Erl = 2.4; %dielectric permittivity of an oxide layer, [-];

Er2 =80; % dielectric permittivity of a fluid substrate, [-],

Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
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e = 8.854e-12; % vacuum permeability [H/m]
u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]
r1=r0+8.202735219555178e-06; %radius of the occurred oxide layer (m);
c=3*1e+8; % speed of light in vacuum, [m/s]
% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F]
C1=2*pi*e*Erl/(log(r1/r0))
% capacitance of the open ended coaxial stub resonator, contains a fluid, [F]
C2=2*pi*e*Er2/(log(r2/r1))
% total capacitance of the open ended coaxial stub resonator, [F]
C=1/(1/C1+1/C2)
O o m e e e
% capacitance of the open ended coaxial stub resonator, contains air, [F]
Cair=2*pi*e/(log(r2/r0))
%Double check of the effective dielectric permittivity of the system
Dielectric_permittivity=C/Cair
% inductance of the open ended coaxial stub resonator, [H]
L = ((u/(pi*2))*log(r2/r0))
Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
u = Ur*4*pi*1e-7; % magnetic permeability of the dielectric, [H/m]
sigma_feed=515e-4;%conductivity of a fluid between inner and outer conductors, [S/m]
sigma_stainless_steel=7.7e+6;%conductance of the metal applied for outer conductor (stainless steel),
[1/(Ohm*m)]
sigma_steel=6.99e+6;%conductance of the metal applied for inner conductor ( steel), [1/(Ohm*m)]
sigma_oxide=1e-4;%conductivity of an oxide layer, Reference [17] in the manuscript
Eeff_coax=(Er1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]

eps2=Eeff_coax
sigma_polymer=1.41e-7%conductivity of polymer layer
sigma_steel=7.7e+6;%conductance of the metal for the outer conductor(stainless steel) [1/(Ohm*m)]
Eeff=Eeff_coax*(f_feed_t)+e_polymer*f_polymer
E= Eeff * 1/(4*pi*1e-7*c*c); % vacuum permeability [H/m]
Vres=pi*r222*len
Voxide=pi*rif2*len
sigma_eff_main=(sigma_oxide*Voxide+sigma_feed*(Vres-Voxide))/Vres
sigma_eff=sigma_eff _main*f_feed_t+sigma_polymer*f polymer;
check_1=f feed_t+f polymer
vin=120e-3; %input voltage supplied by the function generator, [V]
f=120E+06:10000:180E+06;
omega = 2*pi*f;% angular frequency, [rad/s]
tg=1.168018964411114e-01
Eim=((omega.*E.*tg)-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depthl=sqrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth
skin_depth2=sqrt(2./(omega.*u.*sigma_steel));%skin_depth
Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator
Rs2=1./(sigma_steel.*skin_depth2);% surface resistivity of the inner conductor of the resonator
R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_feed)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C))); %complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]
%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.
Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zc2=Zc
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
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vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

vout =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt
and the underlying assumption of a 50 Ohm load resistance
plot(f/1e+6,vout, 'g--', 'LineWidth',3);

xlabel('Frequency, (MHz)','fontsize',42,'fontweight’,'b");
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight’,'b');
hold on

% INNER CONDUCTOR_Day_1_0.02mm
format longE

h=0.267+0.029; % the length of the coaxial resonator
h_polymer=0.042; % the length of the layer of the polymer layer [m]

db=25e-3; % diameter of the resonator;

Vt=pi*h*db”2/4; %volume of the empty resonator [m#3]

Vt_polymer=pi*h_polymer*db”2/4 %volume of the polymer layer [mA3]
f_polymer=(pi*h_polymer*db”2/4)/Vt %volume fraction of the polymer layer [m”3]
Vt_feed=Vt-Vt_polymer %volume of the resonator with the polymer layer [m”3]

f feed=Vt_feed/Vt

f_feed_t=1-f_polymer

e_polymer=2.2 % dielectric constant of the polymer layer

len =0.267+0.029; %the length of the coaxial resonator, [m];

r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m];

r0 = (0.02e-3)/2; %radius of the inner conductor of the resonator, [m];

Erl = 2.4; %dielectric permittivity of an oxide layer, [-];

Er2 =80; % dielectric permittivity of a fluid substrate, [-],

Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

e = 8.854e-12; % vacuum permeability [H/m]

u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]

r1=r0+8.202735219555178e-06; %radius of the occurred oxide layer (m);

c=3*1e+8; % speed of light in vacuum, [m/s]

% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F]
C1=2*pi*e*Erl/(log(r1/r0))

% capacitance of the open ended coaxial stub resonator, contains a fluid, [F]

C2=2*pi*e*Er2/(log(r2/r1))

% total capacitance of the open ended coaxial stub resonator, [F]

C=1/(1/C1+1/C2)

7

% capacitance of the open ended coaxial stub resonator, contains air, [F]

Cair=2*pi*e/(log(r2/r0))

%Double check of the effective dielectric permittivity of the system

Dielectric_permittivity=C/Cair

% inductance of the open ended coaxial stub resonator, [H]

L = ((u/(pi*2))*log(r2/r0))

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric, [H/m]
sigma_feed=515e-4;%conductivity of a fluid between inner and outer conductors, [S/m]
sigma_stainless_steel=7.7e+6;%conductance of the metal applied for outer conductor (stainless steel),
[1/(Ohm*m)]

sigma_steel=6.99e+6;%conductance of the metal applied for inner conductor ( steel), [1/(Ohm*m)]
sigma_oxide=1e-4;%conductivity of an oxide layer, Reference [17] in the manuscript
Eeff_coax=(Er1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]

eps2=Eeff_coax

sigma_polymer=1.41e-7%conductivity of polymer layer

sigma_steel=7.7e+6;%conductance of the metal for the outer conductor(stainless steel) [1/(Ohm*m)]
Eeff=Eeff_coax*(f_feed_t)+e_polymer*f_polymer
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E= Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

Vres=pi*r222*len

Voxide=pi*rif2*len

sigma_eff_main=(sigma_oxide*Voxide+sigma_feed*(Vres-Voxide))/Vres
sigma_eff=sigma_eff_main*f_feed_t+sigma_polymer*f_polymer;

check_1=f feed_t+f_polymer

vin=120e-3; %input voltage supplied by the function generator, [V]

f=120E+06:10000:180E+06;

omega = 2*pi*f;% angular frequency, [rad/s]

tg=1.168018964411114e-01

Eim=((omega.*E.*tg)-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depthl=sqgrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth
skin_depth2=sqrt(2./(omega.*u.*sigma_steel));%skin_depth
Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator
Rs2=1./(sigma_steel.*skin_depth2);% surface resistivity of the inner conductor of the resonator
R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_feed)./(omega.*E).*omega.*C;%distributed element conductance of the resonator

[F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];

Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zc3=Zc

Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

vout =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt
and the underlying assumption of a 50 Ohm load resistance

plot(f/1e+6,vout, 'b--', 'LineWidth',3);

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');

ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b');

legend ( 'Experimental data','Zc=17.8 Ohm’, 'Zc=1.7 Ohm’, 'Zc=99.8 Ohm')

hold on
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Chapter 6

Abstract

Here we demonstrate the proof-of-principle that a coaxial stub resonator can be used
to detect early stages of biofilm formation. After promising field tests using a stub resonator
with a stainless steel inner conductor as sensitive element, the sensitivity of the system was
improved by using a resonator of shorter physical length, implying higher resonance
frequencies (and by that a higher frequency range of operation) and improved sensitivity
towards dispersion. In addition, the space between inner and outer conductor was filled up
with glass beads, thereby exploiting the larger surface area available for biofilm formation.

Analysis of the biofilm and the stub resonator signal, both as function of time, indicates
that the sensor allows detection of early stages of biofilm formation. In addition, the sensor
signal clearly discriminates between the first stages of biofilm formation (characterized by
separated, individual spots of bacterial growth on the glass beads) and the presence of a
nearly homogeneous biofilm later on in time. Model simulations based on the transmission
line theory predict a shift of the sensor response in the same direction and order of
magnitude as observed in the biofouling experiments, thereby confirming the operating
principle of the sensor.

This chapter is based on the article submitted as:

N.A. Hoog, M.J.J. Mayer, H. Miedema, W. Olthuis, A. A. Tomaszewska, A. H. Paulitsch-
Fuchs, A. van den Berg, On - line Monitoring of Biofouling Using Coaxial Stub Resonator
Technology, Sensing and Bio-Sensing Research (invited paper).
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6.1 Introduction

Biofouling, i.e., the colonisation of an interface by a diverse array of organisms, affects
surfaces and by that may have detrimental effects on the operation of processes in the field
of water technology such as, raw water pre-treatment, drinking water production and
distribution, wastewater treatment, industrial water cooling and water quality analysis [1-6].

Because of the high impact of biofouling on process operation and by implication high
economic cost, in recent years there has been an increasing interest in developing an on -
line sensor able to monitor biofilm formation in real time, especially in an early stage [7-9].
Despite all the efforts to engineer such a sensor, discussed in detail in [10-16], reliable
detection technology for (the onset of) biofouling is still lacking.

Existing technologies rely on pressure drop changes [14, 17], differential heat transfer
[10, 19] or differential turbidity [20]. Actually, none of these methods can reliably detect
biofouling in an early stage. Changes are detected when it is already too late and the system
operation already suffers from serious impairment.

Of all the different detection technologies to track biofouling, actuators that are either
acoustic [21], optical [22] or electromagnetic [23] in nature are most reliable and most
sensitive [10, 24]. A drawback of all these devices is however that the actual detector
required is rather expensive whether that is e.g., an optical sensor [25], an analyser for
scattering (S) parameters [18] or an impedance analyser [26].

The motivation to develop a new type of biofouling sensor was based, firstly, on the
realization that we really need the detection of biofouling in a much earlier stage than
currently available and, secondly, to offer a more cost effective alternative for existing
technology. In the present study we demonstrate the feasibility of a (flow-through) coaxial
stub resonator as a sensitive element of a biofouling sensor. Such resonator systems and
their amplitude-frequency or AF response has been characterized, simulated and reported
by the authors previously [27-30]. We discuss two different designs of such resonators. The
first one has an inner and outer conductor separated by a fluid. The formation of a biofilm
on the surface of the inner conductor (and on the surface of the outer conductor but to a
much lesser extent) affects the skin effect of the inner conductor as well as the dielectric
between inner and outer conductors thereby changing the AF response of the resonator. In
the second type of resonator, the space in between both conductors is filled up with glass
beads (Fig. 1).
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Chapter 6

Fig. 1. Schematic 3D image of the coax sensor with a length of 30 cm and an outer conductor diameter of
25.4 mm filled with glass beads. Also indicated are the input and output ports used for fluid flow-through.

The changes in AF response are caused by both the formation of a biofilm on the
surface of the glass beads and the reaction of the inner conductor surface to the amount of
nutrients in the feed stream. In this case, the response is more related to an (apparent)
change in composition of the feed solution. The sensor geometry and dimensions were
designed such that the sensor can be operated at flow conditions that are relevant for
process operation in industrial equipment and piping and that the required electronics
equipment can be produced in a cost effective way. Additional advantages of our sensor
compared to currently existing ones are that it operates as an early warning system and is
low in maintenance.

6.2 Materials and methods

Sensor description

Fig. 1 shows a schematic outline and the basic elements of a sensor based on a stub
resonator coaxial transmission line, discussed in detail previously [27-30].

The resonator itself consists of an inner and outer conductor separated by a fluid of
certain dielectric permittivity. A change in this (effective) permittivity of the fluid, e.g., due
to a change in fluid composition, will alter the resonator characteristics. Formation of a
biofilm on the surface of the inner and/or outer conductor will also change the behaviour
(i.e., resonant frequency and quality factor) of the resonator. In general, the system is more
sensitive to changes at the surface of the inner conductor than of the outer conductor.
Obviously, the larger the surface area covered with biofilm mass, the higher the volume
fraction of biofilm dielectric between inner and outer conductor. As explained in a previous
study [28], an inner conductor of larger diameter will however not result in a more sensitive
sensor, an effect due to stronger converging electric field lines near an inner conductor of
smaller diameter. There is however a way to enlarge the effective surface area without
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compromising the sensor’s sensitivity. Surface area enhancement can also be accomplished
by filling up the space in between both conductors e.g., with glass beads (see Fig. 1). A
schematic cross section of such system is shown in Fig. 3. The formation of a biofilm on the
surface of the glass beads (in red) introduces a dielectric permittivity that differs from the
permittivity of the glass and the fluid. As a result, the resonant frequency and quality factor
(amplitude ratio) shift upon biofouling of the glass beads surface.

Open (A4) or closed (A/2)

Coaxial Stub Resonator
(RE) Outlet for a
4 ;7, 3 _7«\73 flow through
Outer SN U e
Conductor ?\ ,{\/? 2 ;:-J
g }, ~, ‘/E\, /
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Inlet for a fl CCONIBG
niexrora tow QRG] B}k Inner Conductor
through D=0 @ RS
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Fig. 2. Schematic outline of the coaxial stub resonator sensing system consisting of a function generator
(FG), a spectrum analyzer (SA) and the coaxial stub resonator (RE). The dotted inlet and outlet indicate that the
flow-through resonator can be optionally used as batch resonator.
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Fig. 3. Schematic cross section of the coaxial stub resonator filled with glass beads of which the surface is
covered by a biofouling layer (red). We distinct three types of dielectric between inner and outer conductor:
feed substrate (green, dielectric permittivity €, (-), loss tangent tané,, (-), glass beads (blue, dielectric

permittivity g, (-), loss tangent tandg, (-) and biofouling layer (red, dielectric permittivity & (-), loss tangent
tand (-).
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The dielectric properties of a coaxial resonator filled with glass beads covered with a
biofilm

The effective dielectric permittivity g5 and the effective loss tangent tandes of a coaxial
resonator with multiple concentric layers of different dielectric permittivity has been
described in [32, 33] and is expressed by:

Eeff = f(grl,grz sy Ern) (1)

tanb4 = f(tané,,tané,,...tané, ) (2)

In an ideal resonator without any losses, the resonance frequency f,.s of an open ended
(A/4) and closed end (A/2) resonator are given by Egs. 3a and 3b, respectively. In this special
case, the dielectric constant €. can be determined directly from Egs. 3a and 3b [27, 28].
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where c represents the speed of light in vacuum (m/s), n the order number of f..s (Hz), /
the length of the resonator (m), u, relative magnetic permeability of the dielectric between
inner and outer conductors (-), Up the absolute vacuum permeability (H/m), & the absolute
vacuum permittivity (F/m) and &, the real part of the relative effective dielectric constant.
Note that the capacitance Cin Egs. 3a and 3b is determined by the real part €. of ;.

For a lossy resonator, polarization and conductivity losses in the dielectric under
investigation, as well as resistance losses in the inner and outer conductors, must be taken
into account. A detailed model accounting for these losses, essentially based on
telegrapher's equations, is explained in [34].

In order to describe the behaviour of the biofouling sensor i.e., a lossy resonator packed
with glass beads on which a film of biofouling can grow, the model described in [34] was
extended with expressions for both the effective dielectric permittivity &, and the effective
conductivity of the composite dielectric consisting of glass beads with biofilm, immersed in a
feed substrate.
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For a lossy dielectric, complex dielectric permittivity can be described as:
E T & — jgim (4)

where €, and g, represent the real and imaginary parts of €, respectively.

The effective loss tangent tandes (-), which is a measure for the dielectric losses in the
system, is expressed by Eq. 5:

WE;m, + oeff

tan5eff = (5)

WE e

where €, and o5 reflect the polarization losses and the conductivity losses in the
dielectric, respectively, and w=2m f the angular frequency, in rad/s.

In the following, 2 models for the effective dielectric permittivity of the composite
dielectric will be discussed.

For this, we consider the coaxial resonator packed with glass beads with dielectric
permittivity €45 and volume fraction ¢y, [-] (see Fig. 3). The glass beads are covered with a
biofouling layer with dielectric permittivity & and volume fraction ¢,. The free space in
between the beads is occupied by feed substrate with dielectric permittivity £, and volume
fraction @n.

The first model is known as Lichtenecker’s logarithmic law and is based on the
assumption that the individual components in the mixture are randomly distributed over
the total volume of that mixture [33].

According to Lichtenecker’s logarithmic law the effective permittivity €. of the
(composite) space between inner and outer conductor is given by:

n
loge e = @, -loge; (6)
i=1

108 €cefr = Pyp 108 Egp + @) -lOgE; + @y -lOgE, (7)
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The second model for the effective dielectric permittivity, further on referred to as the
“parallel dielectric layers model” is based on the assumption that the resonator is filled with
subsequent layers of the individual components of the composite dielectric i.e., with a layer
of glass, a layer of biofilm and a layer of feed substrate.

III

According to the “parallel dielectric layers model” the effective dielectric permittivity
€ceff Of the composite space between inner and outer conductor is given by:

Eceff = Pgb " Egp T @ -log €| +@py logep, (8)

The validity of both models for the composite system in Fig. 3 will now be discussed.
From an electrical point of view, biofilm formation in a resonator, filled with feed substrate
and a packed bed of glass beads as dielectric, can be seen as replacing feed substrate
volume by biofilm volume. Therefore, the response changes of the resonator are primarily
determined by the difference in dielectric properties of the biofilm and the feed substrate.

However, biofilm formation introduces a third dielectric in the resonator volume and a
difference between the biofilm and the feed substrate is that the biofilm preferentially
forms on the surface of the glass beads. This is important since the dielectric properties of
the composite material in the resonator are not only determined by the volume fraction of
the biofilm in the composite material but also by its distribution over the total composite
volume. Since a packed bed of glass beads is present between the inner and outer
conductors of the resonator, and since biofilm formation preferentially occurs at the glass
bead surface, formation of biofilm may result in “thin biofilm sheet structures” throughout
the resonator volume, connecting the inner conductor with the outer conductor. However,
not all biofilm will be part of a “direct biofilm connection” between inner and outer
conductors. A similar reasoning can be held for the packed bed of glass beads.

From the reasoning above, it becomes clear that the system in Fig. 3 cannot be
considered as randomly distributed elements of biofilm, glass beads and feed substrate over
the total dielectric volume. However, it can also not be considered as a volume filled with
subsequent layers of the individual components of the composite dielectric. In reality, the
value of e is expected to be in between the results calculated by model 1 and model 2. In
this contribution, both models will be applied as limiting cases to estimate the value of €.

To calculate the effective loss tangent tand.s the effective conductivity of the system
Oceff [S/M] was determined assuming that model 2 applies i.e., that the resonator volume is
filled with subsequent layers of the individual components of the composite dielectric,
resulting in eq. 9:
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Oceff =®gb " Ogbp T 9101 +Pm O (9)

This assumption is considered reasonable for estimating o..s since the feed substrate is
the continuous phase (directly connecting the inner and outer conductors from an electrical
point of view) and since it has a high conductivity as compared to the glass beads. This
means that the term ¢y, -0y is negligible in practice as compared to the term ¢, -on. The
biofilm is present around the glass beads and its conductivity is also considerably higher
than that of the glass beads. Further, as previously explained, “thin biofilm sheet structures”
connect the inner and out conductors. So to some extent, the biofilm and feed substrate can
be considered indeed to be present in the resonator according to model 2.

Biofouling formation and structure

In literature, several models on biofilm formation were proposed [8, 36-39]. Based on
these models we have the following view on biofilm formation in the coaxial resonator
system filled with glass beads:

— Almost immediately after bringing the glass beads in contact with feed substrate,
containing a suspension of bacteria, its surface is covered by a so-called primary film
(conditioning film), modifying the properties of the surface. Formation of such a layer of
surface active molecules is the first step prior to the actual formation of the bacterial film
and may last for a few seconds to minutes after the glass surface is exposed to the feed
substrate [40].

— Primary film formation can be followed by a secondary colonization of bacteria that
benefit from a protective environment in the biofilm and/or feed on the remnants of other
bacteria. In this secondary community, better resource or space competitors may exclude
less competitive organisms [41-43].

— Stable biofilms are composed primarily of microbial cells and extracellular polymeric
substances (EPS) secreted by these cells. The EPS fraction consists basically of
polysaccharides, accounting for up to 50% to 90% of the total organic carbon of biofilms and
proteins. The polysaccharides can be considered the primary matrix material of the biofilm
[44].

For describing the dielectric properties of the biofilm, following assumptions were
made:

— The biofilm mainly consists of water i.e., the mass fraction of water in the biofilm is
higher than about 0.90 and lower than about 0.98 [45, 53 - 56] and a good approximation of
the biofilm is 1000 kg/m? [60].

— The real part of relative dielectric permittivity &,. of the viable bacteria and the EPS
layer in the biofilm are 60 [51] and 70 [57], respectively.
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Chapter 6

— Even though the composition of the EPS layers most likely depends on the exact
process conditions, its composition was considered to be constant during the course of the
experiments of this study. Existing literature report polysaccharides [61] and proteins as
dominant EPS components [62].

— According to [51] the overall composition formula of the biomass is expressed by Eq.
10:

C:H(1.77):0(0.49):N(0.24) (10)

Experimental setups
Half-wave closed ended coaxial resonator

We started out with a half-wave (instead of quarter-wave) closed ended coaxial
resonator. This resonator was essentially very similar to the one shown in Fig. 1 and Fig. 2
but without the glass beads. Table 1 summarizes the physical dimensions of this stub
resonator.

Table 1

Geometric parameters of the flow-through resonator. The outer and the inner conductors of the
resonator were both made from stainless steel 316L.

Parameter Flow-through
resonator
Length, / 1.05 (m)
Inner conductor diameter, d 5-107 (m)
Inner diameter of the outer conductor, D 75:10%  (m)
Diameters of the fluid inlet and outlet 27:10% (m)
Conductivity of stainless steel 316L, o 1.45-10° (S-m™)

Quarter-wave open-ended coaxial stub resonator

Fig. 4 shows a schematic overview of the experimental set-up used to monitor
biofouling. The system comprises three identical flow-through systems, each of them
equipped with a peristaltic pump (Masterflex), two tubes and a vessel of 120 L, with pump,
tubes and vessel all interconnected to a closed configuration. The construction of the
dummies which have the same geometry as a coaxial sensor excluding an inner conductor,
the mode of operation and the experimental conditions were also exactly the same as those
for the coaxial resonator. These five dummies, all running in parallel with the actual
resonator tube, provided five independent controls. This set up made it possible to obtain a
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control sample each day (up to five) the experiment was running without disturbing the
process of biofilm formation in the remaining tubes, including the actual resonator. Feed
substrate, ‘contaminated’ with bacteria cells, was dosed from a supply vessel into each tube
by a peristaltic pump at a flow rate of 1.2 L-h™%.

Table 2 gives an overview of the dimensions of the quarter-wave coaxial stub
resonators applied in this study, see also Fig. 1 and Fig. 2.

Table 2

Geometric parameters of the flow-through resonator (see also the “Supplementary Information”). The
outer and the inner conductors of the resonator were both made from stainless steel 316L.

Parameter Flow—through
resonator
Length, / 29-10™ (m)
Inner conductor diameter, d 5.10° (m)
Inner diameter of the outer conductor, D 25-10° (m)
Diameters of the fluid inlet and outlet 27-10° (m)
Conductivity of stainless steel 316L, o 1.45:10°  (S-m™)

Chapter 6

Fig. 4. Schematic of the experimental set-up consisting of 1) dummy (tube), 2) pump with double rotating
shaft, 3) tank with feed substrate, 4) inlet hose, 5) outlet hose, 6)coaxial sensor connected to the frequency
generator and spectrum analyzer, 7) an inner conductor of coaxial sensor.
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In order to control variations in the resonance frequency and the shape of a response
signal a HAMEG HMS3010 3 GHz Spectrum Analyzer with Tracking Generator was used. (It
should be mentioned that this type of Spectrum Analyzer does not have a fixed input
voltage of the tracking generator for each piece of equipment. In this study three different
Spectrum Analyzer were used (see also MATLAB codes in the “Supplementary
Information”)

The interconnecting transmission lines have all a characteristic impedance Z, of 50
Ohm. The transmission lines were connected to the resonator by using SMA (SubMiniature
version A) connectors all with a total length of 20 mm.

To prevent corrosion of SMA connectors the sensors were filled with a 1-1.5 cm layer of
epoxy resin at the bottom of the sensor, thereby fully immersing the SMA connectors in the
resin. The real part of dielectric permittivity €, of epoxy resin is 3-6 [46].

It should be also mentioned that the difference of the total volume of the dummy and
total volume of the resonator with the inner conductor of 5 mm is 4%. This difference in
available internal volume is caused by the absense of an inner conductor in the dummies.

The differences in amount of glass beads 14% (the average amount of glass beads in the
dummy (resonator without an inner conductor) is 2030 and the average amount in the
resonator with an inner conductor 1750).

Feed substrate

In order to enhance bacterial growth the installation was fed with substrate consisting
of a solution of NaCH3COO, NaNOs and NaH,PQ, in tap water, resulting in a mass ratio C:N:P
of 100:20:10 [45]. All chemicals were purchased in analytical grade (Boom B.V., Meppel,
Netherlands) and dissolved in tap water. For the simulations, the value of €, of the feed
substrate was set at 78 (see also the MATLAB code in the “Supplementary Information”).

Glass beads

The coaxial resonator tubes and dummies, all with a volume of 137.4 ml, were packed
with glass beads of 4 mm diameter (Merck KGaA, Germany), with a total number of beads
per tube of, on average, 2030. The surface area of a single glass bead is 0.5 cm?. The
dielectric permittivity of glass &4, varies within a range of 3.8 to 19 [47-49]. The dielectric
permittivity of quartz glass is 3.8 and that of regular window glass 7.6. Taking into account
that the porosity of glass beads is less than that of regular window glass, in this study &g,
was assumed to be 5.8 (see also MATLAB codes in the “Supplementary Information”).

Culture of Escherichia coli

Escherichia coli (E. coli) 0157:H7 was cultured by incubating 200 mL standard Lysogeny
broth (LB) media for 24 hours at 36 °C [49]. The total cell number in the feed substrate
solution at the start of the experiment was in the range of 5-:10° and 10-10° cells mL™.
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Sampling and analysis of glass beads

To determine the composition and the amount of accumulated biofouling as function of
time, samples of the glass beads from the (dummy) resonator tubes and from the feed
substrate (30 ml) were taken during each day of the experiment. Collected beads and
sampled feed substrate were stored (at -20) in (disinfected) glass tubes until further
investigation. Both types of samples were subjected to four different analyses: TCN, ATP,
TOC, HPC, explained in more detail in the following paragraphs.

Total cell number (TCN)

For TCN determination, a Neubauer Improved Counting Chamber was used and the
total number of cells in the sample was counted optically using a microscope (DM750, Leica,
Wetzlar, Germany). Five squares, each with a volume of 1 [pL], were subjected to counting
and the average value of two independent duplo measurements was taken. TCN [cells/uL]
is given by:

TCN=number of cell counted/number of squares counted (mm?) - depth (mm) - dilution
factor (11)

Adenosine triphosphate (ATP)

As a relative measure for the active biomass content of the biofilm, the ATP
concentration of the biofilm obtained from the glass bead surface was determined. For this
purpose, the entire tube volume, containing all 2030 glass beads, was added to 100 mL of
phosphate-buffered saline (PBS) solution (containing NaCl 8 g L%, KCl 0.2 g L%,
Na,HPO4:7H,0 1.15 g L™* and KH,PO, 0.2 g L™; pH-adjusted to 7.3). In order to detach the
biofilm from the glass bead surface, the suspension of glass beads in PBS was sonicated at
37 kHz for 5 minutes. After sonication, the suspension was further homogenized using a
Vortex (Heidolph Reax Vortex Mixer, Germany). Finally, the suspension was centrifuged for
20 seconds at 2500 rpm. 20 ml of the supernatant was stored at -20 oC until further analysis
by the Vitens laboratory in Leeuwarden (Exp. No. V131232127 _F001).

The ATP measurement of the feed substrate was based on 150 ml samples, without
further dilution.

Total organic carbon (TOC)

To determine the TOC content of the biofilm, all 2030 glass beads of a single tube were
added to 100 mL of PBS in a TOC-free glass tube. Subsequently, the samples were sonicated
at 35 kHz for 15 min (BANDELIN, Ultrasonic bath SONOREX DIGITEC, Germany). As for the
feed substrate, 150 ml was mixed with 100 ml PBS in a TOC-free glass tube. The TOC
concentration in both samples was measured with a TOC analyser (Shimadzu, Japan).
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Heterotrophic plate counts (HPC)

100 ml PBS was added to 150 mL of glass beads (containing 2030 beads) and shaken for
20 minutes. Samples were diluted 10%, 10° and 10® times using 2 mm sterile polypropylene
tubes. To determine CFU per cm?, LB agar plates were used. Therefore, 100 pL of diluted
sample was spread on the plates. Plates were incubated at 37°C for 72 hours.

The HPC procedure for the feed substrate (105 ml) was essentially the same.

Experimental conditions

Temperature, conductivity, and operation time were controlled and stable for each set
of experiments.

Table 3 contents information regarding experimental conditions.

Table 3

Temperature T (°C) and conductivity o (S/m) of the feed substrate for each set of experiment.

Main points of the experiment Temperature, Conductivity,
T(°C) o (S/m)
WLN at Glimmen, The Netherlands: drinking water 9.6%£1.0 300-10#+54-10™

from Annen i.e., purified ground water (Fig. 5).

WLN at Glimmen, The Netherlands: the mixture of 10.3%1.5 300-10*+54-10"
drinking water "De Punt" and raw ground water,

creating a high iron(hydroxide) content and with that, a

high fouling rate (Fig. 6).
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WETSUS, The Netherlands: tap water (Fig. 7) 20.0+1.5 515-10%+20-10™

WETSUS, The Netherlands: using the substrate of the 20.0+1.5 618-10+20-10™
feed and E. coli culture (Fig. 8)

WETSUS, The Netherlands: using the substrate of the 22.0 620-10™
feed, E. coli culture and AgNOs (Fig. 14)
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6.3 Results and discussion

In presenting the results we will follow the chronological order the sensor has been
developed. This way the reader can witness the different phases of the project and, more
importantly, follow the arguments that defined our research direction.

Starting point was a flow through half-wave closed ended resonator as shown in Fig. 2
but without the glass beads. In the absence of glass beads the system solely monitors
biofilm formation at the surface of inner and outer conductor, both made from (corrosion-
resistant) stainless steel. As explained earlier, the resonator is much more sensitive to
biofilm formation on the inner conductor as compared to the outer conductor. In a previous
contribution [27, 28], the authors have shown that such flow-through resonator can be
operated in a stable and reproducible way and that it is feasible for measuring the dielectric
properties of fluids.

Fig. 5 shows the results of a field test at a drinking water production facility and water
quality centre of WLN at Glimmen, Netherlands. The field test was executed at the SenTec
testing facility of WLN where different qualities of drinking water are available for testing
sensors at “real life conditions”. The test was executed with drinking water from Annen i.e.,
purified ground water.

Even though we monitored biofilm formation for as long as 14 days, the results indicate
minimal effects on the AF response. However, visual inspection of both inner and outer
conductors revealed surface modification. Both inner and outer conductors of the flow
through sensor were covered by a thin but visible slimy layer.

Although the observed lack of signal change in Fig. 5 might be caused by the limited
fouling potency of the drinking water used for these experiments, it was concluded that the
sensor should be sufficiently sensitive to detect the thin but visible biofilm that was
observed after 14 days. In order to obtain more information on the sensor performance
under field conditions, it was decided to expose it to water with much higher fouling
capacity. For this purpose, the field test was executed with a mixture of drinking water from
location “De Punt”, i.e., purified surface water, and raw ground water. Now, a clear signal
shift was observed within just four days of operation (Fig. 6).

However, afterwards inspection and analysis of the resonator proved a response due to
the deposition (scaling) of iron oxide on the inner conductor rather than biofilm formation.
This observation actually pointed us in the direction of quite another application for our
sensor, i.e., the monitoring of scaling and oxidation process (manuscript submitted).
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Fig. 5. Left and right panels show the amplitude versus or AF plots in the presence of biofilm on the

surface of inner conductor during 12 days of operation using water from Annen in frequency range of 5-70
MHz and the 3" resonance in more detail, respectively.
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Fig. 6. Left and right panels show the amplitude versus frequency or AF plots in the presence of iron oxide
on the surface of inner conductor during 6 days of operation using water from “De Punt” mixed with ground
water in frequency range of 5-70 MHz and the 3" resonance in more detail, respectively.

In order to evoke biofilm formation, our next step was to incubate the system with E.
coli and perfuse the resonator with a (standard) feed solution promoting bacteria growth.
The key adjustment was however to fill the resonator tube with glass beads to enhance the
surface area for bacteria adherence.

To show the effect of the presence of glass beads, we run two experiments in parallel,
one without (Fig. 7) and the other with glass beads (Fig. 8).
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Fig. 7. Left and right panels show the amplitude versus frequency or AF plots in the presence of biofilm on
the surface of inner conductor during 4 days of operation using the substrate of the feed and E. coli culture in
frequency range of 1-1000 MHz and the 3" resonance in more detail, respectively.

0 -
—_ 2 0 ;
€ .41
[22] —_ 7
T -6 £ ?
- =]
g . S+
] 17" day W
S -10 t gy
= Il 1tdayinthour 3 6 1std Y
o -12 21 oy = o T 1 dayinlhr
- J _Q_ -0 nd
g 14 u 3“] day E Zrd day
-16 1 — gthya < .10 | 3™ day
v dthda
18 ' ' ' ' ' 12 "
200 400 600 800 1000 220 240 260 280 300 320
Frequency (MHz) Frequency (MHz)

Fig. 8. Left and right panels show the amplitude versus frequency or AF plots in the presence of biofilm on
the surface of inner conductor and glass beads during 4 days of operation using the substrate of the feed and
E. coli culture in frequency range of 1-1000 MHz and the 3" resonance in more detail, respectively.

Clearly, the presence of glass beads significantly increased the response sensitivity of
the resonator to biofilm formation. This is reflected in the change of both resonant
frequency and ratio of current amplitude. The results confirm the hypothesis that the AF
responses mainly depend on the formation of biofouling on the surface of glass beads and
less depend on multiplication of bacterial cells (E. coli in this study) in the feed substrate
(see also the earlier). There is also growth of bacteria during biofilm formation. Note that
the response shown in Fig. 8 is entirely different from the ‘scaling’ response shown in Fig. 6.
Whereas deposition of Fe(OH)s results in an upward shift of the AF response i.e. towards a
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higher amplitude at the resonance frequency, biofilm formation shifts the response, first,
towards higher resonance frequencies and slightly lower amplitudes, followed by a shift in
opposite direction.(discussed later in more detail). This difference points to a different
working mechanism responsible for the two different types of responses observed.

Fig. 9 delineates the changes of resonant frequency and amplitude ratio separately for
the first five resonances in Fig. 8. The experiments ran for four days and each plot has a data
point for each day. As can be seen, the changes over time for the resonances were very
similar, notably in the case of the resonant frequency with a peak value at day 2. The
similarity is valid for the amplitude ratio as well (but to a slightly lesser extent) and with a
minimum value at day 2. From these similarities in response changes we conclude that the
mechanism responsible is the same for each resonance. An important conclusion as it
declassifies other, possible interfering, processes causing similar changes.

Fig. 10 correlates the observed change in resonant frequency and the one in amplitude,
for the first five resonances and over a time period of four days. The increasing dispersion at
higher frequencies (resonances) is evident as the individual data points for each resonance
diverge with increasing resonance number. This conclusion is in line with decrease of the
quality factor i.e., the broader band with of each resonance relative to its center frequency,
with increasing resonance number in the AF plot, see the left panel of Fig. 8.
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Fig. 9. Resonant frequencies and amplitudes of the first five resonances over a time period of 4 days and
in response to biofilm formation. Error bars represent the standard deviations of three independent
experiments.
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Fig. 10. Correlation between changes in resonant frequencies and amplitude for the first five resonances
over a time period of four days and in response to biofilm formation.

In order to correlate the observed AF responses of the resonators to bacterial
growth/biofilm formation, samples were taken simultaneously and used for total organic
carbon (TOC), total cell number (TCN), colony forming units (CFU) and adenosine
triphosphate (ATP) analysis (Fig. 11; n=3). The increase of TOC over time, obtained
exclusively from the bead surface, demonstrates the ‘deposition’ of carbon. The observation
that TCN and ATP simultaneously increase renders support for the conclusion that the
increase of TOC reflects the presence of (living) bacteria on the bead surface rather than
scaling effects due to the deposition of inorganic carbon. The temporal dip at day 3 seen
simultaneously in the analysis of ATP, TCN and CFU indicates a ‘real’ effect rather than an
artefact. The most plausible reason for this observation is carbon depletion of the feed
solution (experiments were performed in a closed system at recycle conditions over the
resonators and dummies). The carbon coming free after mass starvation of bacteria cells
served as carbon source, resulting in a blooming bacteria culture at day 4.
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Fig. 11. Analysis of colony forming units (CFU); total cell number (TCN); total organic carbon (TOC) and
adenosine triphosphate (ATP) over time and normalized for surface area. All samples used were collected
exclusively from biofilm material on the surface of glass beads. Data based on three independent experiments.
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In addition to the CFU, TCN, TOC and ATP measurements, the glass bead surface was
examined by scanning electron microscopy (SEM) and examples are shown in Fig. 12, at
magnifications of 5000. The SEM images indicate attachment of biofilm after day 1 but, in
addition, also some detachment of biofilm between days 3 and 4, an effect possibly related
to the observed mass starvation, as indicated by the data in Fig. 11, and subsequent
blooming of the bacteria culture at day 4.
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Fig. 12. SEM images of the glass bead surface, taken on 1%, 2"d, 3 and 4" day of the experiment. Each
image gives a qualitative reflection of the observed glass bead surface texture and was selected based on a
microscopic scan of different surface areas.

In order to relate the observed sensor response shown in Fig. 8 to the biofilm formation
on the glass beads, model simulations were executed. Major objective was to investigate
whether the changes in the AF responses, measured during the biofilm experiment, can be
explained by changes in the dielectric properties of the composite material in the resonator,
applying the model explained in section 2.2.

A major challenge for the model simulations is to obtain a realistic estimate of the
biofilm volume in the resonator, even more so because the % mass fraction of biomass in
the biofilm strongly depends on process conditions. Reported values for the % mass fraction
vary from 2% to 10%. [45, 53 - 56]. For this reason, the model simulations were executed for
these two limiting cases as well as for an assumed biomass fraction of 5%. The total amount
of biomass in the biofilm and subsequently the volume fraction of biofilm were derived from
the TOC measurements according to the procedure outlined in the “Supplementary
Information”.

Table 4 gives an overview of the calculated volume fractions of the biofilm on the glass
beads from day 1 to day 4 assuming biomass fractions (%) of the biofilm of 2%, 5% and 10 %.
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Table 4

The calculated biofilm volume fraction in the dielectric between inner and outer conductors ¢l at days 1
to 4 as derived from TOC measurements, assuming mass fractions (%) of biomass in the biofilm of 2%, 5% and

10%, respectively (see also the “Supplementary Information”).

Day TOC lab, 2 % (w/w) biomass 5 % (w/w) biomass 10 % (w/w) biomass
[mg/ml] in biofilm in biofilm in biofilm

1.57+0.36 1.38-10'+3.13-107 5.53-10%+1.25-107 2.76:10%46.26-107
3.29+1.11 2.90-10'49.81-107 1.16:10'+3.92-107 5.80:10%+1.96-1072
4.3242.75 3.81-10"+2.42-10" 1.52:10"49.69-107 7.62:102+4.84-10
4.16+2.35 3.67-10"+2.07-10 1.47-10"+8.29-107 7.34-10%+4.14-10

B W N -

It should be mentioned that, as Table 4 shows, at the start of the experiment (i.e., the
recording labeled Day 1) a significant amount of TOC was measured already. Most likely, this
TOC concentration represents small amounts of TOC originating from the feed substrate
attached to the glass bead surface during sampling.

The two key parameters characterizing changes in the dielectric properties of the
composite material in the resonator are €, and tan tand.s. The biofilm consists of E. coli and
EPS with relative dielectric constants of 60 and 70, respectively. In the simulations, it was
assumed that the dielectric constant of the biofilm layer g, = 60, thereby implicitly assuming
that, at day 2, the dielectric properties of the biofilm are determined by the presence of E.
coli rather than EPS (extracellular polymeric substance).

Fig. 13 shows the measured and simulated third resonance AF plots for the biofouling
experiments using the biofilm volume fractions in Table 4, for days 1 and 2. Two models
were compared, Lichtenecker's logarithmic law for composite material (model 1, Eq. 7)
versus a model description in terms of a system composed of parallel dielectric layers of
glass, biofilm and feed substrate, respectively (model 2, Eqg. 8). As explained in section 0, the
“real life situation” is expected to represent an intermediate result between these two
model simulations.
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Lichtenecker’s logarithmic law (Eq. 7) “Parallel dielectric layers” model (Eq. 8)
2%
0
£ g
) s
% ]
£ 27
= b
£ o 8
< <
-100
M0 240 260 280 300 320 0  2a0 260 280 300 320
Frequency (MHz) Frequency (MHz)
5%
0_
2
= &
z k)
3 5
z° H
T 5 a
gt £
< <
-10-
0 240 260 280 300 320 %0 240 260 280 300 320
Frequency (MHz)
10%
0
-2
£ & ©
z 2 g
S 6 - a
2 2 ©
B 3 5 <
£ E (©)
< <
-10f
%0 200 260 280 300 320 %0 240 260 280 300 320
Frequency (MHz) Frequency (MHz)

Fig. 13. The observed and simulated third resonance AF plots for the biofouling experiments comprising
the resonators filled with glass beads. The experimental data for days 1 and 2 are represented by the red
circles and green circles, respectively. The magenta and blue curves represent the model simulations for the
first day and second day respectively.
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Both the experimental data and the model simulations reveal that biofilm formation on
the glass beads results in a shift of the minimum in the AF plots towards higher frequencies.
This is expected since, from an electrical point of view, biofilm formation can be seen as
replacing feed substrate dielectric (g, ~ 77) by biofilm dielectric (g, ~ 60). As a result, biofilm
formation will decrease the effective dielectric constant e,z resulting in a shift of the
minimum in the AF plot towards higher frequencies, see also equation 3a (representing the
ideal resonator case, the applied model is described in more detail in [28]. Fig. 13 further
shows that application of Lichtenecker's logarithmic law predicts a smaller shift of the AF
plot towards higher frequencies than the “parallel dielectric layers” model, which results
directly from the lower value of €., predicted by the “parallel dielectric layers” model.

In spite of the large number of assumptions made, both for calculation of the biofilm
volume fraction in the resonator and for the model simulations, Fig. 13 clearly demonstrates
that, in case of biofouling on the glass beads, the measured sensor response (shift in AF
plot) is in the same direction and order of magnitude as predicted by the model, thereby
confirming that the operating principle of the sensor is (predominantly) defined by changes
of Eceff-

The results also reveal that a more detailed model, accounting for the exact geometric
interactions between the different composite materials in the resonator, i.e., for the
influence of glass beads with a shell of biofilm immersed in feed substrate on both dielectric
permittivity and conductivity of the composite material, opens possibilities to use the model
as a tool to relate signal change of the sensor more quantitatively to the volume fraction of
biofouling in the system.

To further proof that the responses seen in Fig. 8 are indeed due to biofilm formation, a
control experiment was performed in the presence of 3 mM/L of AgNOs, a potent bacteria
growth inhibitor (Fig. 14). The results are affirmative. Compared to Fig. 8, over the first 2
days the response hardly changed. Even though the response was clearly affected in a later
stage (day 5), the observed shift was in opposite direction of the one seen in the absence of
AgNOs in the feed solution, indicating quite a different working mechanism. This hypothesis
was confirmed by Energy Dispersive X-ray spectroscopy (EDX) that identified the spots as
depositions of AgCl, due to its low solubility (see also the “Supplementary Information”).
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Fig. 14. AF response in the presence of 3 mM AgNO; during 5 days of operation in frequency range of 1-
1000 MHz with the 3™ resonance plotted in more detail (right panel).

The AF responses of Fig. 15 were subjected to a similar analysis as those shown in Figs.
9 and 10. As in Fig. 9, the trend of the resonant frequency was identical for all resonances
included in the analysis. As for the amplitude, we arrive at the same conclusion except for
the first resonance. More importantly, the trends shown in Fig. 15 are essentially different
from the one shown in Fig. 9. This distinction emphasizes the fact that the observed (shift in)
response is due to a different cause, i.e., biofilm formation versus AgCl deposition,
respectively.
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Fig. 15. Resonant frequency and amplitude of the first five resonances over a time period of four days
and in response to AgCl deposition.
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Fig. 16 correlates the observed change in resonant frequency and the one in amplitude,
for the first five resonances and over a time period of five days. The increasing dispersion at
higher frequencies (resonances) is evident as the individual data points for each resonance
diverge with increasing resonance number.
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Fig. 16. Correlation between changes in resonant frequencies and amplitude for the first five resonances
over a time period of five days and in response to AgCl deposition.

The difference between the glass bead surface covered with a biofilm and one with
AgCl became also apparent from SEM images (Fig. 17). Whereas the images at day 1 of Fig.
12 and Fig. 17 are very similar, the images taken at day 4/5 are completely different with
absolutely no bacteria cells attached in the presence of AgNOs.
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Fig. 17. SEM images of the glass bead surface before (left) and after (right) the deposition of AgCl.
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Note that the observed shift in the AF response curve towards higher resonance
frequencies (see Fig. 14) is in the anticipated direction since the static relative dielectric
permittivity €. of AgCl is 11.14 [65], thereby decreasing .4 of the dielectric between inner
and outer conductors, see equation Eq.3a and increasing the resonance frequencies of the
resonator, see equation Eq.3a.

6.5 Conclusions

— A flow-through stub resonator, with glass beads between inner and outer conductor
as a surface for biofilm formation, was successfully applied to detect (early stages of)
biofouling.

— Model simulations based on transmission line theory predict a shift in the amplitude
versus frequency response of the sensor in the same direction and order of magnitude as
observed experimentally, thereby confirming the operating principle of the sensor.

— The results indicate that isolated spots of biofilm and a homogenous biofilm layer
result in a different AF response of the sensor, opening possibilities to discriminate between
the onset of biofouling and a homogeneous biofilm layer

— The flow-through sensor design is relatively simple, robust and can be cleaned inline,
opening possibilities to further develop it into a cost effective inline biofouling sensor.
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6.8 Supplementary Information

Appendix A

For the model simulations, the exact resonator geometry was taken into account. In
addition to the geometric parameters in Table 1, following parameters were accounted for
in the model:

1. An inner conductor that is longer than the outer conductor, thereby slightly
increasing the effective resonator length by 2.9 cm, see also Fig. A.1.

2. A polypropylene disc used in the top cap of the resonator with a thickness of 1
cm. This disc replaces feed substrate by polypropylene, see also Fig. A.1.

3. The presence of 1.5-2 cm epoxy resin at the bottom of the resonator in order to
protect the SMA connector from corrosion

It is noted that the thickness of the epoxy resin layer and the thickness of the disc were
lumped into one parameter €.,0x, With a relative dielectric permittivity of 2.

The model simulations shown in Fig. 13 were performed according to the following
procedure:

1. First the resonator filled with epoxy resin and air was simulated and the
simulation was validated with experiments.

2. Subsequently, the resonator filled with epoxy resin, glass beads and air was
simulated and also this simulation was validated with experiments.

3. Finally, the model was validated for a sensor filled with epoxy resin, glass beads
and feed substrate, by comparing model simulation with experiments.

This validated model (together with the dielectric constant &, and tané for glass beads,
epoxy resin and feed substrate and) was used as starting point for the simulations in Fig. 13.

Fig.A.1. A photo of the coaxial resonator which includes the plastic cap on the top with dimensions.
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To exclude the effect of the epoxy resin on the bottom of the resonator the following
function was used:

function F = bio_air_epoxy_coax_resonator(x,f)
% The resonator was not closed, SO the polymer did not played role at all!!
em=1; % dielectric permittivity of the feed substrate, [-]
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom [m]
% note: epoxy on the bottom of the sensor
h_epoxy=0.02; % the length of the layer of epoxy [m]
db=25e-3; % diameter of the resonator;
Vt=pi*h*db”2/4; %volume of the empty resonator [m"3]
Vt_epoxy=pi*h_epoxy*db”2/4 %volume of the epoxy resin [m*3]
f_epoxy=(pi*h_epoxy*db”2/4)/Vt %volume fraction of the epoxy resin [m”3]
Vt_air=Vt-Vt_epoxy %volume of the filled with epoxy resonator [m”3]
f_air=Vt_air/Vt
f_air_t=1-f epoxy
len =0.267+0.029; % length of the coax resonator [m]
b = 25e-3; % inner diameter of the outer conductor [m]
a = 5e-3;% outer diameter of the inner conductor [m]
c=3*1e+8; % speed of light in vacuum [m/s]
Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors [-]
u = Ur*4*pi*1e-7; % magnetic permeability of the dielectric [H/m]
sigma_air=0;%conductivity of the dielectric between inner and outer conductors [S/m]
sigma_epoxy=1.41e-7%conductivity of the poxy resin
sigma_steel=7.7e+6;%conductance of the metal applied for inner and outer conductors (stainless steel)
[1/(Ohm*m)]
sigma_eff=sigma_air*f_air_t+sigma_epoxy*f_epoxy;
Eeff=em*(f_air_t)+x(2)*f_epoxy
E = Eeff * 1/(4*pi*1e-7*c*c); % vacuum permeability [H/m]
C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator [F]
L = ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator [H]
%Define the input voltage supplied by the function generator [V]
vin=100e-3; %input voltage supplied by the function generator [V]
omega = 2*pi*f;% angular frequency [rad/s]
Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depth=sqrt(2./(omega.*u.*sigma_steel));%skin_depth
Rs=1./(sigma_steel.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]
%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.
Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]
F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance
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The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

load air_new.txt % load the file with data of the day of experiment
%- See the Supplementary Information

f=air_new(:,1); % Load experimental data; frequency
amplitude=air_new(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

plot(f/1e+6, amplitude, 'or')

hold on

x0 =[01];

ya0 = bio_air_epoxy_coax_resonator(x0,f);

% %- Plot initial values

% hold on;

% plot(f,ya0,"--m')

%-Boundary conditions

LB = [0 1]; % Lower bounds

UB = [1 100]; %Upper bounds

% -Solving nonlinear least-squares curve fitting

[x,resnorm] = Isqcurvefit('bio_air_epoxy_coax_resonator',x0,f,amplitude, LB, UB)
ya =bio_air_epoxy_coax_resonator(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");

grid on

hold on

To determine the effective loss tangent tand.s (Eq. 5) of all system and the effective
dielectric permittivity of glass beads g4, the following function was used:

function F = bio_air_glass_coax_resonator(x,f)
em=1; % dielectric permittivity of the feed substrate, [-],
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom [m],

% note: epoxy on the bottom of the sensor
h_epoxy=0.062; % the length of the layer of epoxy [m]
db=25e-3; % diameter of the resonator;
% e_epoxy=3.98 %from the simulation defined from the simulation models
e_epoxy_pol=1.96 %from the simulation defined from the simulation models

%using experimental data of the empty resonator with epoxy

%resin on the bottom
Vt=pi*h*db”2/4; %full volume of the empty resonator, [m”3]
Vt_epoxy=pi*h_epoxy*db”2/4 % volume of the part contains epoxy resin, [m"3]
f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of the part contains epoxy resin, [-]
Vt_feed=Vt-Vt_epoxy; %volume of the part of the resonator filled with epoxy resonator, [m#3]
f feed_t=Vt_feed/Vt %volume fraction of air (feed) in the filled with epoxy resonator, [-]
Ng=2230; % the number of glass beads in the resonator, [-]
dg=4e-3; % diameter of the glass bead [m];
Vglass=(Ng*pi/6*dg”3); % volume of the glass beads, [m"3]
fgb=Vglass/(Vt_feed) % volume fraction of the glass beads, [-]
f feed_t_gb=1-fgh% volume fraction of the air (feed) in a composition with glass beads, [-]
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%dielectric constant of the composition (mixture) glass beads and air defined using the Lichtenecker equation
em_glass_1=f feed_t_gb*(log10(em))+fgb*log10((x(2)));

em_glass_feed=10"em_glass_1

%parallel capacitance

em_glass_feed=f_feed_t_gb*((em))+fgb*((x(2))

check_s=f _feed_t_gb+fgb

% len =0.29; % length of the coax resonator, [m]

len =0.27+0.029; % length of the coax resonator [m]

b = 25e-3; % inner diameter of the outer conductor, [m]

a = 5e-3;% outer diameter of the inner conductor, [m]

c=3*1e+8; % speed of light in vacuum, [m/s]

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric, [H/m]

sigma_feed=0;%conductivity of the dielectric between inner and outer conductors, [S/m]
sigma_epoxy=1.41e-7%conductivity of epoxy resin, [S/m]

sigma_glass=1e-12%conductivity of glass glass bead, [S/m]

sigma_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless steel),
[1/(Ohm*m)]

fgh_t=Vglass/(Vt)

f_of feed=1-f_epoxy-fgb_t

sigma_eff = sigma_feed*f of feed + sigma_epoxy*f_epoxy + sigma_glass* fgb_t;% effective conductivity of
whole system, [S/m]

checkkk=fgb_t+f _epoxy+f_of_feed

Eeff=em_glass_feed*(f_feed_t)+e_epoxy_pol*f_epoxy% effective dielectric constant of whole system, [-]

E =Eeff * 1/(4*pi*1e-7*c*c); % vacuum permeability [H/m]

checkl=f_feed_t+f_epoxy

C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator [F]

L = ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator [H]

%Define the input voltage supplied by the function generator [V]

vin=120e-3; %input voltage supplied by the function generator [V]

omega = 2*pi*f;% angular frequency [rad/s]

Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depth=sqrt(2./(omega.*u.*sigma_steel));%skin_depth

Rs=1./(sigma_steel.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator

[F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];

Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance
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The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

load glass_new.txt % load the file with data of the day of experiment
%- See the Supplementary Information

f=glass_new(:,1); % Load experimental data; frequency
amplitude=glass_new(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

plot(f/1e+6, amplitude, 'or')

hold on

x0 =[01];

ya0 = bio_air_glass_coax_resonator(x0,f);

% %- Plot initial values

% hold on;

% plot(f,ya0,'--m')

%-Boundary conditions

LB = [0 1]; % Lower bounds

UB = [1 50]; %Upper bounds

% -Solving nonlinear least-squares curve fitting

[x,resnorm] = Isqcurvefit('bio_air_glass_coax_resonator',x0,f,amplitude, LB, UB)
ya =bio_air_glass_coax_resonator(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");

grid on

hold on
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To determine the effective loss tangent tandes (Eq. 5) of all system and the effective
dielectric permittivity of feed substrate em the following function was used:

function F = bio_feed_epoxy_coax_resonator(x,f)
e_epoxy = 1.96; % dielctric constant of epoxy, defined from the simulation
% x(2) dielectric permittivity of the feed substrate, [-],
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom [m],
% note: epoxy on the bottom of the sensor
h_epoxy=0.062; % the length of the layer of epoxy [m]
db=25e-3; % diameter of the resonator;
Vt=pi*h*db”2/4; %volume of the empty resonator [m"3]
Vt_epoxy=pi*h_epoxy*db”2/4 % volume of epoxy resin in the resonator
f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of epoxy resin in the resonator
Vit_feed=Vt-Vt_epoxy %volume of the filled with epoxy resonator [m”3]
f_feed=Vt_feed/Vt %volume of feed substrate in the filled with epoxy resonator [m#3]
f_feed_t=1-f_epoxy %volume fraction of feed substrate excluding epoxy in the filled with epoxy resonator
[m”3]
len =0.27+0.029; % length of the coax resonator [m]
b = 25e-3; % inner diameter of the outer conductor [m]
a = 5e-3;% outer diameter of the inner conductor [m]
c=3*1e+8; % speed of light in vacuum [m/s]
Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors [-]
u = Ur*4*pi*1e-7; % magnetic permeability of the dielectric [H/m]
sigma_feed=615e-4;%conductivity of the dielectric between inner and outer conductors [S/m]
sigma_epoxy=1.41e-7%conductivity of thepoxy resin
sigma_steel=7.7e+6;%conductance of the metal applied for inner and outer conductors (stainless steel)
[1/(Ohm*m)]
%effective conductance of both feed substrate and epoxy resin
sigma_eff=sigma_feed*f _feed_t+sigma_epoxy*f_epoxy;
%effective dielectric permittivity of both feed substrate and epoxy resin
Eeff=x(2)*(f_feed_t)+e_epoxy*f_epoxy
E = Eeff * 1/(4*pi*1e-7*c*c); % vacuum permeability [H/m]
C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator [F]
L= ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator [H]
%Define the input voltage supplied by the function generator [V]
vin=120e-3; %input voltage supplied by the function generator [V]
omega = 2*pi*f;% angular frequency [rad/s]
Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depth=sqrt(2./(omega.*u.*sigma_steel));%skin_depth
Rs=1./(sigma_steel.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]
%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.
Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]
F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance
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The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

load sub.txt % load the file with data of the day of experiment
%- See the Supplementary Information

f=sub(:,1); % Load experimental data; frequency
amplitude=sub(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

plot(f/1e+6, amplitude, 'or')

hold on

x0 =[0 1];

ya0 = bio_feed_epoxy_coax_resonator(x0,f);

% %- Plot initial values

% hold on;

% plot(f,ya0,'--m')

%-Boundary conditions

LB = [0 1]; % Lower bounds

UB = [1 100]; %Upper bounds

% -Solving nonlinear least-squares curve fitting
[x,resnorm] = Isqcurvefit(' bio_feed_epoxy_coax_resonator',x0,f,amplitude, LB, UB)
ya = bio_feed_epoxy_coax_resonator(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b");
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");
grid on

hold on
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To determine the effective loss tangent tandes (Eq. 5) of all system and the effective
dielectric permittivity of glass beads &4, by influence of the feed substrate the following
function was used:

function F = bio_feed_glass_coax_resonator(x,f)
em=75.4; % dielectric permittivity of the feed substrate, [-],
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom, [m],
% note: epoxy on the bottom of the sensor
h_epoxy=0.062; % the length of the layer of epoxy, [m]
db=25e-3; % diameter of the resonator, [m];
% e_epoxy=3.98 %from the simulation defined from the simulation models
e_epoxy=1.96 %from the simulation defined from the simulation models
%using experimental data of the empty resonator with epoxy
%resin on the bottom
Vt=pi*h*db”2/4; %full volume of the empty resonator, [m”3]
Vt_epoxy=pi*h_epoxy*db”2/4 % volume of the part contains epoxy resin, [m#3]
f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of the part contains epoxy resin, [-]
Vit_feed=Vt-Vt_epoxy; %volume of the part of the resonator filled with epoxy resonator, [m”3]
f_feed_t=Vt_feed/Vt %volume fraction of air (feed) in the filled with epoxy resonator, [-]
Ng=2230*1.05; % the number of glass beads in the resonator, [-]
dg=4e-3; % diameter of the glass bead [m];
Vglass=(Ng*pi/6*dg”"3); % volume of the glass beads, [m”3]
fgb=Vglass/(Vt_feed) % volume fraction of the glass beads, [-]
f feed_t_gb=1-fgh% volume fraction of the air (feed) in a composition with glass beads, [-]
%dielectric constant of the composition (mixture) glass beads and air defined using the Lichtenecker equation
em_glass_1=f feed_t_gb*(log10(em))+fgb*log10((x(2)));
em_glass_feed=10"em_glass_1
%parallel capacitance
em_glass_feed=f_feed_t_gb*((em))+fgb*((x(2))
check_s=f_feed_t_gb+fgb
len =0.267+0.029; % length of the coax resonator [m]
b = 25e-3; % inner diameter of the outer conductor, [m]
a = 5e-3;% outer diameter of the inner conductor, [m]
c=3*1e+8; % speed of light in vacuum, [m/s]
Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
u = Ur*4*pi*le-7; % magnetic permeability of the dielectric, [H/m]
sigma_feed=615e-4;%conductivity of the dielectric between inner and outer conductors, [S/m]
sigma_epoxy=1.41e-7%conductivity of epoxy resin, [S/m]
sigma_glass=1e-12%conductivity of glass glass bead, [S/m]
sigma_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless steel),
[1/(Ohm*m)]
fgb_t=Vglass/(Vt)
f_of feed=1-f_epoxy-fgbh_t
sigma_eff = sigma_feed*f_of_feed + sigma_epoxy*f_epoxy + sigma_glass* fgb_t;% effective conductivity of
whole system, [S/m]
checkkk=fgb_t+f_epoxy+f_of_feed
Eeff=em_glass_feed*(f_feed_t)+e_epoxy*f_epoxy% effective dielectric constant of whole system, [-]
E =Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]
checkl=f_feed_t+f_epoxy
C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator [F]
L = ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator [H]
%Define the input voltage supplied by the function generator [V]
vin=600e-3; %input voltage supplied by the function generator [V]
omega = 2*pi*f;% angular frequency [rad/s]
Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
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skin_depth=sqrt(2./(omega.*u.*sigma_steel));%skin_depth

Rs=1./(sigma_steel.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance

The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

load feed_glass_epoxy.txt % load the file with data of the day of experiment
%- See the Supplementary Information

f=feed_glass_epoxy(:,1); % Load experimental data; frequency
amplitude=feed_glass_epoxy(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

plot(f/1e+6, amplitude, 'or')

hold on

x0 = [0 1];

ya0 = bio_feed_glass_coax_resonator(x0,f);

% %- Plot initial values

% hold on;

% plot(f,ya0,"--m')

%-Boundary conditions

LB = [0 1]; % Lower bounds

UB = [1 10]; %Upper bounds

% -Solving nonlinear least-squares curve fitting

[x,resnorm] = Isqcurvefit('bio_feed_glass_coax_resonator',x0,f,amplitude, LB, UB)
ya =bio_feed_glass_coax_resonator(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b');

grid on

hold on
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To determine the effective loss tangent tandeff (Eq. 5) of all system and the effective
dielectric permittivity of glass beads egb by influence of the feed substrate the following
function was used (main simulation for day 1 and day 2):

clc
clearvars
em=75.4; % dielectric permittivity of the feed substrate, [-],
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom, [m],
% note: epoxy on the bottom of the sensor
h_epoxy=0.062; % the length of the layer of epoxy, [m]
db=25e-3; % diameter of the resonator, [m];
e_epoxy=1.96 %from the simulation defined from the simulation models
%using experimental data of the empty resonator with epoxy
%resin on the bottom
Vt=pi*h*db”2/4 %full volume of the empty resonator, [m”3]
Vtl=pi*h*5e-322/4
nu=(Vt1)*100/Vt
Vt_epoxy=pi*h_epoxy*db”2/4 % volume of the part contains epoxy resin, [m"3]
f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of the part contains epoxy resin, [-]
Vt_feed=Vt-Vt_epoxy %volume of the part of the resonator filled with epoxy resonator, [m#3]
f feed_t=Vt_feed/Vt %volume fraction of air (feed) in the filled with epoxy resonator, [-]
Ng=2230; % the number of glass beads in the resonator, [-]
dg=4e-3; % diameter of the glass bead [m];
Vglass=(Ng*pi/6*dg”3); % volume of the glass beads, [m"3]
fgb=Vglass/Vt_feed % volume fraction of the glass beads, [-]
ebiol=60;
fbiol=0.138;
e_gb=5% dielectric constant of glass
f_feed_t_gh=1-fgb-fbiol
% volume fraction of the air (feed) in a composition with glass beads, [-]
%dielectric constant of the composition (mixture) glass beads and air defined using the Lichtenecker equation
%Lichtenecker’s logarithmic law
% em_glass_1=f feed_t_gb*(log10(em))+fgb*log10((e_gb))+fbiol*log10((ebiol));
% em_glass_feed=10"em_glass_1
%parallel capacitance
em_glass_feed=f_feed_t_gb*((em))+fgb*((e_gb))+fbiol*((ebiol));
check_s=f_feed_t_gb+fgb+fbiol
len =0.267+0.029; % length of the coax resonator, [m]
b = 25e-3; % inner diameter of the outer conductor, [m]
a = 5e-3;% outer diameter of the inner conductor, [m]
c=3*1e+8; % speed of light in vacuum, [m/s]
Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
u = Ur*4*pi*le-7; % magnetic permeability of the dielectric, [H/m]
sigma_feed=615e-4;%conductivity of the dielectric between inner and outer conductors, [S/m]
sigma_epoxy=1.41e-7%conductivity of epoxy resin, [S/m]
sigma_glass=1e-12%conductivity of glass glass bead, [S/m]
sigma_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless steel),
[1/(Ohm*m)]
fgb_t=Vglass/Vt;
V_biol=fbiol*Vt_feed;
fbiolt=fbiol*Vt_feed/Vt
f_of feed=1-f_epoxy-fgb_t-fbiolt
sigma_biol=615e-4;
sigma_eff = sigma_feed*f of feed + sigma_epoxy*f_epoxy + sigma_glass* fgb_t+sigma_biol*fbiolt;% effective
conductivity of whole system, [S/m]

180



On - line Monitoring of Biofouling Using Coaxial Stub Resonator Technology

check=fgb_t+f_epoxy+f of feed+fbiolt

Eeff=em_glass_feed*(f_feed_t)+e_epoxy*f_epoxy% effective dielectric constant of whole system, [-]
checkkkkkk=f_feed_t+f_epoxy

E =Eeff * 1/(4*pi*1e-7*c*c); % vacuum permeability [H/m]

tang_eff=0.08

C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator, [F]

L = ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator, [H]

%Define the input voltage supplied by the function generator, [V]

f=220E+06:10000:320E+06;

vin=600e-3; %input voltage supplied by the function generator, [V]

omega = 2*pi*f;% angular frequency, [rad/s]
Eim=((omega.*E.*tang_eff)-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depth=sqrt(2./(omega.*u.*sigma_steel));%skin_depth

Rs=1./(sigma_steel.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator

[F/(m*s)]
gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]
%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];

Im(gamma)=beta=phase of the propagation constant [rad/m]
%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.
Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]
vout =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt
and the underlying assumption of a 50 Ohm load resistance
hF = figure
hA = axes
set(hA, 'XGrid', 'off', 'YGrid', 'on')
hold on
set(0,'DefaultTextFontSize',36,'DefaultTextFontName','Times New Roman', 'DefaultTextFontWeight', 'bold');
%- See the Supplementary Information
load day_one.txt % load the file
MHz=day_one(:,1); % Load experimental data; frequency
CH1=day_one(:,2); % Load experimental data; amplitude
frequency=MHz;
amplitude=CH1;
plot(frequency,amplitude,'LineStyle','none','Marker',".!,'"MarkerEdgeColor','r', 'MarkerSize',40)
hold on
plot(f/1e+6,vout, 'm', 'LineWidth',3);
xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b');
hold on
%DAY TWO
em=75.4; % dielectric permittivity of the feed substrate, [-],
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom, [m],
% note: epoxy on the bottom of the sensor
h_epoxy=0.062; % the length of the layer of epoxy, [m]
db=25e-3; % diameter of the resonator, [m];
e_epoxy=1.96 %from the simulation defined from the simulation models
%using experimental data of the empty resonator with epoxy
%resin on the bottom
Vt=pi*h*db”2/4 %full volume of the empty resonator, [m"3]
Vtl=pi*h*5e-322/4
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nu=(Vt1)*100/Vt

Vt_epoxy=pi*h_epoxy*db”2/4 % volume of the part contains epoxy resin, [m"3]
f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of the part contains epoxy resin, [-]
Vt_feed=Vt-Vt_epoxy %volume of the part of the resonator filled with epoxy resonator, [m”3]
f_feed_t=Vt_feed/Vt %volume fraction of air (feed) in the filled with epoxy resonator, [-]

Ng=2230; % the number of glass beads in the resonator, [-]

dg=4e-3; % diameter of the glass bead [m];

Vglass=(Ng*pi/6*dg”"3); % volume of the glass beads, [m"3]

fgb=Vglass/Vt_feed % volume fraction of the glass beads, [-]

ebiol=60;

fbiol=0.290;

e_gh=5% dielectric constant of glass

f_feed_t_gh=1-fgb-fbiol

% volume fraction of the air (feed) in a composition with glass beads, [-]

%dielectric constant of the composition (mixture) glass beads and air defined using the Lichtenecker equation
%Lichtenecker’s logarithmic law

% em_glass_1=f feed_t_gb*(logl0(em))+fgb*log10((e_gb))+fbiol*log10((ebiol));

% em_glass_feed=10"em_glass_1

%parallel capacitance

em_glass_feed=f_feed_t_gb*((em))+fgb*((e_gb))+fbiol*((ebiol));

check_s=f_feed_t_gb+fgb+fbiol

len =0.267+0.029; % length of the coax resonator, [m]

b = 25e-3; % inner diameter of the outer conductor, [m]

a = 5e-3;% outer diameter of the inner conductor, [m]

c=3*1e+8; % speed of light in vacuum, [m/s]

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric, [H/m]
sigma_feed=615e-4;%conductivity of the dielectric between inner and outer conductors, [S/m]
sigma_epoxy=1.41e-7%conductivity of epoxy resin, [S/m]

sigma_glass=1e-12%conductivity of glass glass bead, [S/m]

sigma_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless steel),
[1/(Ohm*m)]

fgb_t=Vglass/Vt;

V_biol=fbiol*Vt_feed,;

fbiolt=fbiol*Vt_feed/Vt

f of feed=1-f_epoxy-fgb_t-fbiolt

sigma_biol=615e-4;

sigma_eff = sigma_feed*f_of feed + sigma_epoxy*f_epoxy + sigma_glass* fgb_t+sigma_biol*fbiolt;% effective
conductivity of whole system, [S/m]

check=fgb_t+f_epoxy+f_of feed+fbiolt

Eeff=em_glass_feed*(f_feed_t)+e_epoxy*f_epoxy% effective dielectric constant of whole system, [-]
E =Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

tang_eff=0.08

C = ((2*pi*E)/log(b/a)); % capacitance of the open ended coaxial stub resonator, [F]

L= ((u/(pi*2))*log(b/a));% inductance of the open ended coaxial stub resonator, [H]

%Define the input voltage supplied by the function generator, [V]

f=220E+06:10000:320E+06;

vin=600e-3; %input voltage supplied by the function generator, [V]

omega = 2*pi*f;% angular frequency, [rad/s]
Eim=((omega.*E.*tang_eff)-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depth=sqrt(2./(omega.*u.*sigma_steel));%skin_depth

Rs=1./(sigma_steel.*skin_depth);% surface resistivity of the inner and outer conductor of the resonator
R=(Rs/(2*pi)*(1/(0.5*a)+1/(0.5*b)));% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]
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%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];

Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =

omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]

Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]

vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2%*Zin)))).A2);%modulus of vout, the is the

recorded voltage by the spectrum analyzer [V]

vout =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt

and the underlying assumption of a 50 Ohm load resistance

hold on

set(0,'DefaultTextFontSize',36,'DefaultTextFontName','Times New Roman', 'DefaultTextFontWeight', 'bold');
%- See the Supplementary Information

load day_two.txt % load the file

MHz=day_two(:,1); % Load experimental data; frequency

CH1=day_two(:,2); % Load experimental data; amplitude

frequency=MHz;

amplitude=CH1;

plot(frequency,amplitude,'LineStyle','none','Marker','*','MarkerEdgeColor','g', 'MarkerSize',10)

hold on

plot(f/1e+6,vout, 'b', 'LineStyle','--','LineWidth',3);

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');

ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b');

hold on
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Amplitude (dBm)

-4?00 210 220 230 240 250
Frequency (MHz)

The output parameters of the simulation Value
tanéeff 0.03
Eepoxy 3.98

Fig. A.1. Experimentally obtained amplitude versus frequency plot of empty resonator with the layer of

epoxy resin on the bottom (red) using a quarter wave length open-ended coaxial resonator. Fitting data are
shown for comparison (blue).
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The output parameters of the simulation Value
tantSeff 0.02

Fig. A.2. Experimentally obtained amplitude versus frequency plot of filled with glass beads resonator
with the layer of epoxy resin on the bottom (red) and glass beads using a quarter wave length open-ended
coaxial resonator. Fitting data are shown for comparison (blue).
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Amplitude (dBm)

25 30
Frequency (MHz)

The output parameters of the simulation Value

tanéeff 0.75
Em 75.4

Fig. A.3. Experimentally obtained amplitude versus frequency plot of filled with feed substrate resonator
with the layer of epoxy resin on the bottom (red) and feed substrate using a quarter wave length open-ended
coaxial resonator. Fitting data are shown for comparison (blue).
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Frequency (MHz)

The output parameters of the simulation Value

taaneff 0.08
ggp Lichtenecker’s logarithmic law 3.5
ggp parallel capacitance 5

Fig. A.4. Experimentally obtained amplitude versus frequency plot of filled with glass beads resonator
with the layer of epoxy resin on the bottom (red), feed substrate and glass beads using a quarter wave length
open-ended coaxial resonator. Fitting data are shown for comparison (blue).
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Appendix B

Taking into account the presumptions made in section 6.2. The assumption that volume
fraction of biofilm in the system can be calculated based on the values of total organic
carbon (TOC) was made to simulate the behavior of the coaxial stub resonator.

The procedure to find the volume fraction of biofilm includes following steps:
1. The TOC form the laboratory will be named TOC _lab in [mg/ml].

2. Since, glass beads were immersed in 100 ml of PBS, the mass of TOC, further TOC_m
in [kg]:

_ TOC_lab-Volume _of _PBS
1-10°

TOC m (B.1)

3. Using Eq. (10) the factor to converting the TOC_m to total organic biomass TOB in
[kg] was calculated as 2.25:

TOB=2.25-TOC_m (B.2)

4. For the limiting cases that the mass fraction of total organic biomass in the biofilm
fmass are assumed to amount 2% and 10% respectively, this means that the total mass of the
biofilm TOB, total can be calculated as:

TOB_total =TOB_m/ fp,4ss (B.3)
(@)
= 5. Assuming the density of biofouling p pioouiing is 1000 kg/m3 the volume of total
ge,
=3 biomass V_biomass in [m?] by A.4:
D
o))
TOB _total
V _biomass = ._—o.a (B.4)
o _biofoling
6. So, the volume fraction of biomass ¢, is expressed by following equation:
V _biomass
Q= » (B.5)

v _resonator —V _epoxy

It is noted that in our estimate of the biofilm volume, we neglected the decreasing dry
mass of salts in the system with time. This decrease is caused the fact that bacteria contain
inorganic salts whereas the EPS hardly contains any inorganic material. As a result the
overall mass fraction of salts in the biofilm decreases as a function of time due to the
increasing EPS volume fraction as compared to bacteria. It is also should mentioned that
despite fact that the value of 1000 kg/m3 P_biofouling Were taken for the simulation in reality
this number can be higher depending on EPS content and amount up to 1300 kg/m3 [57].
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Appendix C
Cost-reducing suggestions for design and operation

As a receiver, a simple rectifier can be used and the rectified signal can be fed into a 10
bit ADC of the same microcontroller. The software in the microcontroller realizes in such
case the following steps in an endless loop:

1) program the frequency generator to produce a signal with frequency f;

2) read the amplitude of the rectified signal on the ADC input of the microcontroller;
3) write the amplitude and frequency to a data logger using a RS232 protocol;

4) increase the frequency f with a small step Af;

5) repeat steps 1 to 4 until the desired AF plot is obtained.

18
5
T-19
S
g -20
£
4‘21 — 15:1 day
— b
22 . . 4 day
10 20 30 40 50

Frequency (MHz)

Fig. C.1. AF plots in the presence of biofilm on the surface of inner conductor during 4 days of operation

(o}
—
()
)
Q.
©
<
()

using tap water from laboratory of WETSUS in frequency range of 5-50 MHz. The temperature t and
conductivity o of used water were controlled and constant 22 °C and 550-10™[S- m™], respectively.
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Appendix D
Results of energy Dispersive X-ray (EDX) spectroscopy

Samplel was a clean glass bead and sample 2 was glass bead with adsorbed layer of
AgCl.

Full scale counts: 2000 sample 1(1)

2000

1500 -

=]

1000

9 kev
Q)
=t
i Quantitative Results for: sample 1(1)
Element Net Z A F Weight % Atom %
Line Counts
CK 1184 0.838 3.736 1.000 6.04 11.17
oK 7810 0.892 2.130 1.000 46.94 65.14
Na K 2510 0.990 1.588 0.998 3.17 3.06
Mg K 936 0.973 1.366 0.997 1.00 0.91
Al K 478 1.010 1.221 0.993 0.47 0.39
Si K 18819 0.988 1.133 0.996 18.75 14.82
KK 743 1.062 1.071 0.998 1.68 0.96
CakK 906 1.043 1.054 1.000 2.44 1.35
AuM 7501 1.554 0.994 1.000 19.49 2.20
Total 100.00 100.00
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Full scale counts: 2000 sample 1(2)
2000 + si
1500
0
1000
500 Au
C
| K Ca
0 1 T T l ] T T T T T T T
0 2 3 4 5 6 7 8 9 10
kev
Quantitative Results for: sample 1(2)
Element Net Z A F Weight % Atom %
Line Counts (o}
CK 1174 0.834 3.825 1.000 6.47 12.15 E
oK 6840 0.888 2.191 1.000 44.63 62.88 %
Na K 2304 0.985 1.581 0.998 3.06 3.00 6
Mg K 855 0.969 1.361 0.997 0.96 0.89
Al K 535 1.006 1.218 0.993 0.56 0.46
SiK 18792 0.983 1.132 0.996 19.73 15.84
KK 710 1.057 1.073 0.998 1.70 0.98
Cak 924 1.038 1.056 1.000 2.63 1.48
AuM 7363 1.547 0.997 1.000 20.25 2.32
Total 100.00 100.00
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Full scale counts: 2000

2000

1500 —

1000

sample 1(3)

)

[T-

keV
Quantitative Results for: sample 1(3)
Element Net z A F Weight % Atom %
0O Line Counts
%:3- CK 703 0.786 4.348 1.000 5.60 13.05
=3 OK 2811 0.837 2.646 1.000 28.20 49.30
; Na K 1315 0.929 1.568 0.998 2.20 2.68
Mg K 680 0.913 1.354 0.996 0.97 1.11
Al K 446 0.947 1.220 0.991 0.59 0.61
SiK 18190 0.925 1.137 0.995 24.34 24.23
K K 867 0.987 1.109 0.998 2.71 1.94
CakK 1008 0.968 1.085 1.000 3.71 2.59
AuM 8895 1.454 1.018 0.999 31.68 4.50
Total 100.00 100.00
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Full scale counts: 2001 sample 2(1)

2000 Si

1500

1000

(2]

w
(-]
~ -
-]
-

0 10
kev
Quantitative Results for: sample 2(1)

Element Net Z A F Weight % Atom %
Line Counts e}
CK 0 0.708 4.063 1.000 0.00 0.00 E
oK 5090 0.780 3.198 1.000 26.39 60.28 =
Na K 3271 0.865 1.799 0.999 2.69 4.28 S
Mg K 863 0.850 1.508 0.997 0.58 0.88
Al K 353 0.881 1.316 0.995 0.22 0.29
SiK 16526 0.861 1.198 0.994 9.94 12.93
ClIK 5838 0.916 1.152 0.991 5.76 5.93
KK 1133 0.915 1.100 1.000 1.49 1.40
Agl 13505 1.182 1.071 1.000 27.32 9.25
Au M 17245 1.353 0.998 0.996 25.61 4.75

Total 100.00 100.00
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Full scale counts: 2000

2000 —

sample 2(2)

[T-

keV
Quantitative Results for: sample 2(2)
Element Net Z A F Weight % Atom %
9 Line Counts
= CK 0 0.686 4.153 1.000 0.00 0.00
o oK 3577 0.751 3.558 1.000 18.33 50.92
; Mg K 987 0.818 1.547 0.997 0.61 1.11
Al K 352 0.848 1.343 0.995 0.19 0.32
Si K 17242 0.828 1.218 0.993 9.35 14.80
ClK 8735 0.880 1.158 0.990 7.67 9.62
CakK 902 0.859 1.138 1.000 1.31 1.45
ZnlL 2359 1.011 1.647 0.999 3.08 2.09
Agl 18553 1.135 1.080 1.000 33.52 13.82
Au M 19515 1.301 1.006 0.995 25.93 5.85
Total 100.00 100.00
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Full scale counts: 2000 sample 2(3)
2000 - - Ag
Ag
1500 -
1000
3 %
500 | Mo
Y e
0 T T T T T T ™
0 1 2 3 4 5 6 7 8 9 10
kev

Quantitative Results for: sample 2(3)

Element Net Z A F Weight % Atom %
Line Counts
CK 0 0.676 3.938 1.000 0.00 0.00
OK 4620 0.741 3.779 1.000 16.65 49.36 f
Mg K 1299 0.808 1.578 0.998 0.54 1.06 5
SiK 15991 0.818 1.229 0.993 5.80 9.79 _::Qu'
ClK 17285 0.869 1.142 0.987 9.88 13.22 (@)
CakK 816 0.848 1.145 1.000 0.79 0.93
ZnlL 3468 0.998 1.694 0.999 3.08 2.24
Agl 34594 1.121 1.072 1.000 41.09 18.07
AuM 25383 1.284 0.999 0.994 22.16 5.34

Total 100.00 100.00
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Chapter 7

Abstract

In this study, we demonstrate the proof-of-principle of a new type of sensor to monitor
the loading of ion exchange resins (IER). The sensing device outlined here is based on the
operating principle of a quarter wave length open-ended stub resonator with an IER present
between its inner and outer conductor. Loading of the IER by binding of the substrate of
interest affects both the real and imaginary parts of the complex dielectric permittivity of
both the IER and the fluid under investigation. As a result, the recorded amplitude-
frequency (AF) plot shows a shift of the resonance frequency and/or a change of shape of
the resonance peak(s). Two types of stub resonator designs were explored, either with a
straight (classical) or a helically-shaped inner conductor. Because of the different electrical
length of the inner conductor, the two types of resonator operate in different frequency
ranges, which, in turn has implications for the sensitivity of the sensor. Irrespective the
design, the method outlined here offers an equipment-undemanding, low maintenance and
cost-efficient in-line early warning system to monitor the load of IERs. Experimental
evidence is provided showing that measuring the load degree of an anion exchange resin
(AER) with humic acid (HA) is technically feasible, opening possibilities to assess the HA load
of the AER continuously and before significant breakthrough is detected in the effluent.
Hence, the proposed method provides an efficient tool to optimize the regeneration cycles
of AER columns. Apart from experimental data, the AF response of the sensor was simulated
showing that the HA load and regeneration of the AER can be described in terms of the real
part of its dielectric permittivity and its loss tangent up to HA load degrees of about 1 gram
HA per liter of AER. At higher load degrees, a different AF response was observed and at the
same time, regeneration of the AER was strongly inhibited indicating that the proposed
method may be an efficient tool as an early warning system or to study the behavior of
composite dielectrics immersed in water.

This chapter is based on the article submitted as:

N.A. Hoog, M.J.J. Mayer, H. Miedema, S. M. Bakker, W. Olthuis, T. Hubert, A. van den
Berg: A Coaxial Stub Resonator-Based Sensor for the On-line Monitoring of the Loading of
lon Exchange Resins, Sensing and Bio-Sensing Research.
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7.1 Introduction

Adsorption to an ion exchange resin (IER) is a widely used technique to remove an
unwanted component out of a solution. In many Northern European countries IER
technology is common practice during the production of drinking water from surface water
[3]. In contrast to ground water, surface water contains humic acids (HA), the main fraction
of an intricate mixture of organic compounds resulting from the decomposition of dead
natural organic matter (NOM). These components are present at different degrees and
variations, not only giving the surface water a yellowish/brownish color but causing taste
and odor problems as well. It is for these reasons that HA need to be removed.

One of the most widely used AER in the drinking water industry for HA removal is
Purolite® A860S with a total organic carbon removal capacity of 3g/L. Inherently to any IER-
based adsorption process is that, over time, the |IER saturates and needs to be regenerated.
Timing of this regeneration process is crucial. Postponing the regeneration process too
much implies a compromised quality of the IER effluent and in addition may damage the
resin in the sense that (most) resins can beyond a certain degree of loading no longer be
regenerated completely. If the regeneration is started too early, on the other hand, precious
rest capacity of the IER is wasted. This all implies the operational window of IERs to be
rather narrow. Apart from these direct costs, the regeneration procedure is time consuming
and labor intensive [4, 5]. There thus is a strong economically-driven incentive in the
drinking water industry to have the timing of IER regeneration right [6-8]. Recently, several
IER sensors have been introduced, all monitoring a different characteristic of the IER [9 - 11].
Despite the fact that the working mechanism is not always obvious [12, 13], these sensors
lack a certain simplicity in construction and have not been tested under field conditions yet
[14]. Moreover, they assess IER properties by chemical rather that physical methods [15],
are often off-line [16 - 20] and sometimes require rather labor-intensive data analysis [17].

Dielectrometry [18-20] has shown the ability to monitor the dielectric properties of IERs
by recording its complex impedance. This development implies that chemical analysis of the
IER effluent is no longer necessary. Another advantage is that, in contrast to chemical
analysis, dielectric monitoring can be performed continuously.

Here we introduce a sensor to assess the dielectric properties of an IER, and by that its
degree of loading, based on coaxial stub resonator technology. Previously, it has been
demonstrated that stub resonators can be used successfully to determine the dielectric
properties of fluids, including those with lossy dielectrics [21 -25]. As will be shown here, the
amplitude-frequency (AF) response of the resonator is affected by changes of the dielectric
properties of the IER upon adsorption or desorption (during degeneration) of the particular
compound of interest (here HA). A model description based on the dielectric properties of
mixtures and composites adds to understanding the sensor response and the ability to
predict IER behaviour during operation.
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7.2 Sensor description

Fig. 1. shows a schematic outline and the basic elements of a sensor based on a stub
resonator coaxial transmission line, discussed in detail previously in [21-25], but here filled
with ion exchange resin.

Open (A/4) or closed (A/2)

Coaxial Stub Resonator Outlet for a
(RE) flow through
Quter
Conductor Inner Conductor

Insulation Layer
Inlet for a flow i

through X , Layer of Epoxy
- Resin

Fig. 1. Schematic outline of the coaxial stub resonator sensing system consisting of a function generator
(FG), a spectrum analyzer (SA) and the coaxial stub resonator (RE). The dotted inlet and outlet indicate that the
flow-through resonator can be optionally used as batch resonator.

The dielectric properties of composites

As shown in Fig. 1, the system comprises several layers of different dielectric properties.
Working from the inside to the outside we distinguish the inner conductor, an isolation
layer, the IER submerged in the fluid under investigation and the outer conductor. The
effective dielectric permittivity €. and the effective loss tangent tand.; of a coaxial
resonator with multiple concentric layers of different dielectric permittivity has been
described in [21 - 25] and is expressed by:

Eeff = f(grl,ngI"'/grn) (1)

tanbg = f(tand,,tans,,...tand, ) (2)
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In an ideal resonator, i.e., one without any losses, the resonance frequency fs of an
open ended (A/4) and closed ended (A/2) resonator are given by Egs. 3a and 3b,
respectively, directly rendering the dielectric constant €, [21 - 25].

2n-1 c-(2n-1)

Foo= _ (3a)
" 2.mALe 41\/€0E0Mre o

n
f p— p—
2. 2 €0€0Mre Mo

(3b)

where c represents the speed of light in vacuum (m/s), n the order number of f..s (Hz), /
the length of the resonator (m), u, relative magnetic permeability of the dielectric between
inner and outer conductors (-), Up the absolute vacuum permeability (H/m), & the absolute
vacuum permittivity (F/m) and &, the real part of the relative effective dielectric constant.
Note that the capacitance Cin Eqgs. 3a and 3b is determined by the real part €, of €,.

For a lossy resonator, polarization and conductivity losses in the dielectric under
investigation, as well as resistance losses in the inner and outer conductors, must be taken
into account. A detailed model accounting for these losses, essentially based on
telegrapher's equations, is explained in [25].

The IER sensor represents a lossy resonator packed with ion exchange resin of which
the properties change upon adsorption or desorption (during regeneration) of humic acid
(HA). In order to theoretically describe the behavior of this system, the model described in
[25] has been extended with expressions for both the effective dielectric permittivity €, and
the effective conductivity of the composite dielectric, consisting of IER, with or without HA
adsorbed to it, and immersed in feed substrate.

For a lossy dielectric, the complex dielectric permittivity is given by:
€ =€~ JEim

(4)

where €. and €, represent the real and imaginary parts of €, respectively.

The effective loss tangent tandeg (-), which is a measure for the dielectric losses in the
system, is expressed by Eq. 5:
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we;, to
tanéeff = “ A

“ere (5)

where €, and o5 reflect the polarization losses and the conductivity losses in the
dielectric, respectively, and w=2m f the angular frequency, in rad/s.

The presence of IER (including the counter charge attached to it) and (but to a lesser
extent) the amount of free HA and other ions in solution substantially increase the
conductivity of the system causing dispersion of the signal. The insulation around the inner
conductor serves to limit this dispersion effect. The effective conductivity o.s of the
composite dielectric between inner and outer conductors is a parameter hard to assess
since it is not possible to discriminate between signal changes due to polarization losses and
signal changes due to conductivity losses [32]. The difficulty is related to the
aforementioned high fluid conductivity as well as several different processes that may occur
in the resin phase: ion exchange, interactions other than ion exchange, (de)protonation of
functional groups, IER (de)swelling and diffusive processes. All these processes may affect
the conductivity and polarization losses of the system. However, because it remains
unknown to what extent these processes actually occur, oes was lumped into tand.g (see Eq.
5), which, in turn, represents a fitting parameter in the model used. It is noted that lumping
of 0.5 into tand.sis common practice [26].

The real part of & and tand.g can also be expressed in terms of the capacitance and
tangent loss of the individual system elements:

Ere = Cef /Cvacuum (6)

where Cygcuum is the capacitance of the resonator with vacuum between both
conductors.

According to [27], the effective capacitance C.s of a coaxial capacitor with a two-layer
dielectric is given by Eqgs. 7 and 8:
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-1
1 1
Corr =| —+— 7
eff |:C1 C2:| ( )

where C; and C, are the capacitances related to the insulation layer and the fluid,
respectively, each given by:

2 2
- MEQE; and C, = TEHE, @)
In(ry /ry) In(r, /r;)
where

€1, real part of dielectric permittivity of the insulation layer (-);
€,, real part of the effective dielectric permittivity of the fluid (-);
ro, radius of the inner conductor of the resonator (m);

ry, radius of the insulation layer (m);

r,, inner radius of the outer conductor (m).

Taking into account Egs. 6 - 8, g5 of a cylindrical capacitor with dielectrics €; and &; in
radial direction can be expressed by [27]:

r
elezln(zJ
o
Eeff = (9)
p) n
gIn| = |+&,In| =
n o

It is noted that until now we assumed that the second dielectric, with real part of
dielectric permittivity &,, is a fluid. In reality, the resonator is packed with IER particles
immersed in the fluid pumped through the resonator under plug flow regime. This means
that, in our IER process, €, represents the real part of the effective dielectric permittivity of
the packed bed with IER particles immersed in the fluid. It is noted that, theoretically, it is
possible to express €, in terms of the volume fraction of IER, @, €z, the volume fraction of
fluid @guis and gqus. However, as also noted in the discussion on Eq. 5, the system of IER
immersed in the fluid that is being purified is rather complex. In addition, in a flow-through
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resonator, both the fluid composition and the composition of the IER are functions of the
length coordinate of the resonator, due to directionality of perfusion (from bottom to top)
and the continuous removal of HA from the fluid by adsorption to the IER. In effect, the real
part of the dielectric permittivity €, becomes a function of the length coordinate of the
resonator as well. In case the dependence of €, as a function of the length coordinate of the
resonator is known, theoretically, the “length averaged value” of €, provides the effective
value of &;. This can easily be understood by deriving the expression for &4 for a system of
two resonators in series, each filled with a different dielectric. Underlying assumption in this
reasoning however, is that the change in €, per 1 gram of adsorbed HA onto the AER at low
AER load degrees is nearly equal to the change in &, per 1 gram of adsorbed HA onto the
AER at high AER load degrees. In practice the change of €, as a function of the load degree
of HA on the AER may not be linear and it may be required to also account for this non
linearity. It should be noted however that too large differences in dielectric properties
between these two resonators might cause the impedance difference become too large,
causing reflection effects. In such case the resonator would not work properly anymore.

It is important to realize that the effective value of &, is determined by the length
averaged value of &; (I) since it means that the shifts in AF response are expected to depend
on the amount of adsorbed HA only and not on the distribution of the absorbed HA over the
length coordinate of the resonator. This brings along the advantage that the sensitivity of
this stub resonator does not depend on the load degree of the IER column. On the other
hand, it should be realized that the developed method will not detect malfunction of the IER
column due to for example a too short residence time of the fluid in the column. In such
case, the sensor signal would indicate that the column is still only partly loaded with HA and
yet there would be HA in the effluent because of a too short adsorption time.

With the aforementioned assumptions, Egs. 3-9 give a full description of the behavior of
the coaxial stub resonator.

Using the model, the dielectric properties of the composite dielectric mixture between
inner and outer conductors of the resonator in terms of &, and tandes can be determined
from experimentally determined AF plots. This procedure was applied in this study to
quantify the loading (and regeneration) capacity of the IER column used in terms of &, and
tanbes (see also “Supplementary Information”).

We investigated two different types of resonators with slightly different design as for
their inner conductor, either straight or helically-shaped. The rationale of the latter design is
its longer inner conductor, i.e., it behaves as a resonator with a straight inner conductor of
the same length as its helical counterpart [28]. The advantage of the helical type is that it
shows more resonances in the same frequency range, implying larger f..s differences at the
highest resonances in that particular frequency range.
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7.3 Material and Methods

Experimental setup

Fig. 2 shows the experimental set-up, including two resonators (1, 2) with either a
straight inner conductor (4a) or helical type of inner conductor (4b). Apart from the
different type of inner conductor, the system comprises two identical flow-through systems,
each of them equipped with a peristaltic pump (Masterflex), a vessel of 120 L and a pump
generating a flow rate of 3 ml-min™. The experiments to load the IER in Fig. 2 with HA
typically lasted about 144 hours. During the experiments, the temperature and conductivity
fluctuations of the feed solution and effluent were measured to amount less than 2 °C and
200 pS/cm, respectively. Further, it was shown that these temperature and conductivity

fluctuations did not significantly influence the AF plots shown in this study (see also
Appendix A).
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Fig. 2. Schematic view of the experimental set-up consisting of a coaxial resonator (1) with straight inner

conductor (4a), coaxial resonator (2) with helical inner conductor (4b), pump (3), storage tank for tap water
(5), inlet hoses (6,7) and outlet hoses for waste (8,9).
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Quarter-wave open-ended coaxial stub resonator with straight and helical inner
conductors

Table 1 and Table 2 give an overview of the dimensions of the quarter-wave coaxial
stub resonators applied in this study, see also Fig. 1 and Fig. 2.

Table 1

Geometric parameters of the flow-through resonator with a straight inner conductor. The outer and the
inner conductors of the resonator were made from stainless steel 316L and copper, respectively.

Parameter Flow-through
Resonator
Length, / 29:10™ [m]
Inner conductor diameter, d 4-10° [m]
Outer diameter of inner conductor including the 5.5-10° [m]
polymer insulation material, dd
Inner diameter of the outer conductor, D 25107 [m]
Diameters of the fluid inlet and outlet 27-10° [m]
Conductivity of stainless steel 316L, o 1.45-10° [S-m™]
Conductivity of copper, o 5.96:10" [S-m™]

Table 2

Geometric parameters of the flow-through resonator with a helical inner conductor. The outer and the
inner conductors of the resonator were made from stainless steel 316L and copper, respectively.

Parameter Flow-through
Resonator

Length of the outer conductor, /,u: 29-10" [m]

O Length of the inner conductor, /iyer 9.10" [m]

= Inner conductor diameter, d 1-10° [m]

-% Outer diameter of inner conductor including the 1.5:10° [m]

: polymer insulation material, dd
Inner diameter of the outer conductor, D 25-10° [m]
Diameters of the fluid inlet and outlet 27-10° [m]
Conductivity of stainless steel 316L, o 1.45-10° [S-m™]
Conductivity of copper, o 5.96:10" [S:m™]
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In order to control variations in the resonance frequency and the shape of the response
signal, a HAMEG HMS3010 3 GHz Spectrum Analyzer with Tracking Generator was used. It
should be mentioned that the output voltages of the three Spectrum Analyzers of this type
used in this study appeared to be different. This was taken into account in the model
simulations see also the MATLAB codes in the Appendix C.

The interconnecting transmission lines used all had characteristic impedance Z, of 50
Ohm. The transmission lines were connected to the resonator by using SMA (SubMiniature
version A) connectors, all with a total length of 20 mm.

To prevent corrosion of the SMA connectors the sensors were filled with a 1-1.5 cm
layer of epoxy resin at the bottom of the sensor, thereby fully immersing the SMA
connectors in the resin. The real part of dielectric permittivity €., of epoxy resin is 3-6 [38].
The influence of the epoxy resin layer on the model simulations was taken into account in
the model simulations, see also the MATLAB codes in the Appendix C.

Analytical procedures

An overview of the measured water parameters as well as the equipment used is given
in Appendix B. Samples were collected in 300 ml amber glass vials with screw cap.
Ultraviolet Absorbance (UV4ss) absorbance was measured at 455 nm using 5 cm quartz cells.

To avoid interference due to turbidity, prior to the measurements, samples for DOC,
humic acid-C and humic acid-N were filtered through pre-washed 0.45 um membrane filters
(Whatman). Milli-Q filtered water served as background correction for the
spectrophotometer.

Anion exchange resin (AER)

The anion exchange resin used in this study is Purolite® A860S (Brenntag NV, Belgium),
a commonly used resin by the drinking water industry to remove HA. The specifications of
Purolite® A860S are listed in the Appendix B [33, 34].

In order to ensure a certain consistency and repeatability of experimental results, we
followed the pre-treatment protocol for AER as described in [33]. In short, AER was
regenerated with 5 bed volumes (BV) of washing solution containing 10% (w/v) NaCl
solution and 2% (w/v) NaOH. The washing solution passed the AER at a rate of 0.5 BV/hr for
>3 hrs. The resin was subjected to two of such regeneration cycles and subsequently
washed with demi-water until the pH of the washing solution was < 11.
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Feed solution of HA in tap water

A synthetic HA solution (Sigma-Aldrich Chemie GmbH, 53680 Humic acid,)), containing
10 mg HA per 1 L of tap water, was used as experimental feed solution. The choice of taking
a solution of HA in tap water as a feed stream for the feasibility tests was based on the
practical relevance of removing HA from tap water and to investigate the influence of
replacing chloride ions in the anion exchange resin (AER) with large organic molecules on
the dielectric properties of the AER.

The properties of the feed solution are summarized in Table 3.

Table 3

Characteristics of the experimental feed solution obtained by dissolving 10 mg HA per liter tap water.

Ne Characteristics Values
1. Temperature, T(°C)  18.2
2. pH, (-) 8.02
3. Conductivity, (uS/cm) 497
4. UVgss, (-) 0.029
5. TOC, (mg/L) 3.63
6. DOC, (ppb) 4730
7. IC, (mg/L) 50.3
8. Humus acids-C, (ppb) 3450

Since HA are a complex mixture of organic components [29], all having different affinity
to the AER, the HA in the feed solution and the effluent were characterized by measuring
parameters 4-8 in Table 3. For the same reason, the total amount of absorbed HA per
volume unit of AER [g/l] was not related to one of these individual parameters 4-8 but
calculated directly from the concentration of solid HA dissolved in the feed solution, the
flow rate of feed solution through the resonator filled with AER and the total filtration time,
assuming a time scale of adsorption short enough compared to the residence time of HA in
the resonator. As a double check, the parameters 4-8 in Table 3 were also determined in the
effluent of the resonator packed with AER. Comparing both methods justified indeed the
assumption that during the experimental conditions applied by far most of the perfused HA
is adsorbed by the AER.
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7.4 Results and Discussion

Effect of adsorption

Examples of the effect of HA adsorption by the AER on the AF response are shown in
Fig. 3 and 4, for a resonator with straight and helical inner conductor, respectively. As
shown, a higher load, i.e., more HA adsorbed, causes two effects on the AF-response. Firstly,
fres shifts to the right, i.e., to higher frequencies and secondly, the entire curve shifts in
upward direction, indicating enhanced dielectric losses.

-2 -2
-4 -
g -6 E 4
o o
T 8 z
g -10 S -6
S -12 4 =1
= =
Bae [
< 16 <
-18 -
-20 - : —— — -10 : : : : - ‘
25 50 75 100 125 150 175 200 50 60 70 80 90 100 110
Frequency (MHz) Frequency (MHz)

Fig. 3. On the left, AF plots in the 1-200 MHz range in response to HA adsorption by AER using a resonator
with straight inner conductor. The right panel shows the 2" resonance in more detail.

— “20 —
£ £
[=1] [=4]
Z T
L] -25 Q
=] =]
3 | E
S -30 \ I s
£ £
< V <
35 |V

10 20 30 40 50 60 18 20 22 24 26 28 30 32 34
Frequency (MHz) Frequency (MHz)

Fig. 4. On the left, AF plots in the 1-200 MHz range in response to HA adsorption by AER using a resonator
with helically-shaped inner conductor. The right panel shows the 2" resonance in more detail.
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Fig. 5 delineates the changes of resonant frequency (top) and amplitude ratio (bottom)
separately for the first (left) and second (right) resonances shown in Fig. 3 and Fig. 4 for
both types of resonators, those with a straight inner conductor (A panels) and those with
the helical one (B panels). The experiments were performed for five different HA
concentrations. As can be seen, observed shifts of f.s as recorded by the two types of
resonators were quite similar. The similarity is valid for the amplitude ratio as well (but to a
slightly lesser extent). From these similarities in response changes we conclude that the
mechanism responsible is the same for each resonance. An important conclusion as it
declassifies other, possible interfering, processes causing similar changes. It also implies that
this type of measurements can be performed in either a lower or higher frequency range,
depending on the specific application. Recording at low frequency reduces the cost of the
required electronics involved but this comes at the expense of sensitivity. For operation at
high frequency the arguments are exactly opposite, an enhanced sensitivity but at higher
cost.
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Fig. 5. Changes of resonant frequency (top row) and amplitude (bottom row) of the first (left) and second
(right) resonance, in response to HA adsorption and using either a resonator with straight (A panels) or helical
inner conductor (B panels).

The shift of the minimum in each resonance of the AF plots to a higher frequency in Fig.
3 and Fig. 4 points to a decrease of the real part of dielectric permittivity of the dielectric
material between inner and outer conductors of the stub resonator ., see Egs. 3a, 9. Since
the insulation layer on the inner conductor does not change during the experiments, this
decrease of .4 is caused by a decrease of the real part of the effective dielectric permittivity
of the AER immersed in the solution pumped through the resonator, €,. Apparently, the
overall effect of replacing chloride ions in the AER by HA in the order of 1 g/I HA results in a
lower value of &,.
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In order to gain more insight in the mechanism by which HA adsorption by AER affects
the AF-response, model simulations were executed and results are summarized in Table 4.
Major objective was to investigate whether the changes in the AF responses, measured
during HA adsorption, can be explained by changes in the dielectric properties of the
composite material in the resonator, applying the model described in [219]. Given the
rather close fit between experimental and model data, notably at frequencies in the vicinity
of fres, we conclude that adsorption of HA does indeed affect the dielectric properties of
AER. The real part g, of the effective dielectric constant of the AER decreases with
increasing HA load whereas the dielectric loss of the AER changes with increasing HA load.
This result will now be discussed in more detail. Replacing the chloride ions in the AER by
the much larger HA anions will swell the AER particles. A second effect will be a net
replacement of “volume elements of water” by “volume elements of HA anions” in the
resonator. Since organic material has a considerably lower dielectric constant than water
[28], the overall effect will be a decrease of the effective dielectric constant of the AER.
However, adsorption of in the order of 1 gram HA per liter AER will only replace a very small
volume fraction of water in the resonator with organic material. Assuming densities of the
AER, the water and HA of around 1000 kg/m3, an AER load degree of 1 g/l would mean that
order of magnitude 0.1% of the total volume in the resonator might be replaced by HA. In
case replacing water by HA (anions) would be the only phenomenon affecting . during the
HA adsorption process, changes in ggs would be negligible [30]. However, the model
simulations in Table 4 reveal a considerable decrease of €. with increasing HA load of the
AER. In fact changes of the real part of dielectric permittivity of the AER are even larger than
the simulated changes of e.4 in Table 4 since, besides the dielectric properties of the AER,
these values also contain information on the insulation layer of the inner conductor and the
water in the resonator.
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Table 4

Simulation of HA adsorption by AER, using the coaxial resonator with straight and helical inner
conductors. Red dots represent experimental data, solid blue line simulation data.
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Table 4 (continued)
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It is critically noted that the minimum in the AF plot of each resonance is not exclusively
determined by &4 but also affected to some extent by losses in the system. In other words,
Eg. 3 is only valid for lossless transmission lines or distortionless transmission lines [25].
However, the simulations in Table 4, using the model outlined in the appendix, clearly reveal
that measured AF plots can only be explained by a significant decrease of €. with increasing
AER load. Further, a close inspection of Fig. 3 and Fig. 4 and Table 4 reveals that for high AER
loads i.e., going from an AER load of 0.7 g/l HA to 1.1 g/I HA, the values of & increase with
increasing HA load. This observation points to a different binding mechanism of HA
molecules to the AER in the load region of 0.7 g/l HA to 1.1 g/I HA as compared to 0 g/l HA
to 0.7 g/l HA and will be discussed in more detail in the section on regeneration of the AER.

The experiments in Fig. 3 and Fig. 4 and the simulations in Table 4 also show that the
dielectric losses in the AER increase with increasing AER load until HA load degrees of about
0.7 g/l and decrease with increasing AER load in the HA load region between 0.7 g/l and 1
g/l. The dielectric losses in the AER consist of conductivity losses and polarization losses, see
Eqg. 5. By insulating the inner conductor of the resonator, the effects of conductivity losses in
the composite dielectric on the AF plots are suppressed. To some extent, introduction of the
dielectric for insulating the inner conductor, will also suppress the effect of polarization
losses in the composite mixture of AER and fluid on the AF plots since in such case the
dielectric properties are not anymore exclusively determined by the properties of the AER —
fluid composite mixture but also by the properties of the insulating dielectric. Discriminating
between both conductivity losses and polarization losses was beyond the scope of this
work.

During the AER loading experiments, the composition of the effluent solution as well as
its temperature and conductivity were determined. The analysis results show that nearly all
HA were loaded on the AER, see Appendix B. In Appendix A, it is shown that the effects of
temperature and conductivity changes in the fluid, measured during the loading
experiments, on the measured AF plots were negligible.

Effect of regeneration

From the point of view of cost-effective operation, evenly important as the adsorption
capacity is the regeneration capacity. For that reason the regeneration process was studied
in more detail as well. An example of typical regeneration experiments are given in Fig. 6
and Fig. 7, using either a straight (Fig. 6) or helical inner conductor (Fig. 7). After loading the
AER to a level of 1.1 g/L, the resonator tube was perfused with regeneration solution (10%
w/v NaCL + 2% w/v NaOH) and an AF-response was recorded after 1.5 and 2.5 hrs,
respectively. Clearly, under these experimental conditions, the effect of perfusing the AER
with the regeneration fluid has a large effect on the AF-response: the minimum in the
resonances of the AF plots shifts to lower frequencies (€. increases) whereas the quality
factor of each resonance increases (tand.s decreases). This indicates that the regeneration
solution may have affected the binding of HA, chloride and hydroxide ions to the AER.
Figures 6 and 7 also show that there is hardly a difference between the AF plots after 1.5
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hours and 2.5 hours of regeneration respectively. This result indicates that equilibrium is
nearly achieved or that the time scale for regeneration is orders of magnitude longer than
expected and feasible in practice. After the regeneration procedure, the AER was perfused
with tap water again and, surprisingly, the measured AF plot was similar to that obtained

with AER column loaded with 1.1 g/l HA.
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Fig. 6. On the left, AF plots in the 1-200 MHz range in response to regeneration of AER using a resonator
with straight inner conductor. The right panel shows the 2" resonance in more detail. The black curves
correspond to AER loaded with 1 g/l of HA during perfusion with tap water and the yellow curves to the
situation after the regeneration procedure and perfusion of the AER with tap water.
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Fig. 7. On the left, AF plots in the 1-200 MHz range in response to regeneration of AER using a resonator
with helically-shaped inner conductor. The right panel shows the 2™ resonance in more detail. The black
curves correspond to AER loaded with 1 g/l of HA during perfusion with tap water and the yellow curves to the
situation after the regeneration procedure and perfusion of the AER with tap water.
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Following the analysis of the adsorption process, the AF-responses obtained from the
regeneration experiments were also delineated in terms of changes in resonant frequency
and amplitude ratio. Results are shown in Fig. 8 and the conclusion is the same as for the
adsorption experiments: the AF response of the two types of resonators explored here with
inner conductors of different geometries are very similar.

A B
_26 __ 88 _ _
g g g T2
22" e H H
T z 80 z 324
§22. 5§76 § g,
£20 g72 ¢ g
“ 68 . : “ 20! - -
s14 s17 s18 s19 s14 s17 s18 s19 s14 s17 s18 s19 s14 s17 s18 s19
Sample (-} Sample (-) Sample (-) Sample (-)

-16 . -B.o _
E & 85 En 5
g -18 3 5 36 .
P o 9.0 v .38 o
= -20 - = T 26
g 2 -95 2 -a0 2
g -22 g— -10.0 g 42 g— -28

24 < 105 -44 < 30

s14 s17 s18 s19 s14 517 518 s19 s14 s17 s18 s19 514 517 s18 s19
Sample (-) Sample (-) Sample (-) Sample (-)

Fig. 8. Changes of resonant frequency (top row) and amplitude (bottom row) of the first (left) and second
(right) resonance, in response AER regeneration, using either a resonator with straight (A panels) or helical
inner conductor (B panels). Where S14 represents the experimental curve for the adsorption of 1.1 g/l of HA;
S17 represents the experimental curve for the regeneration during 1.5 hrs; S18 represents the experimental

curve for the regeneration during 2.5 hrs; S19 represents the experimental curve for the experiment using tap
water.
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Table 5

Simulation of AER regeneration, using the coaxial resonator with straight and helical inner conductors.
Red dots represent experimental data, solid blue line simulation data.
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As was done for the adsorption experiments, the regeneration process was simulated
also, with the same purpose, i.e., to understand the AF-response in terms of changed AER
dielectric properties [24]. Results are shown in Table 5, for a resonator with straight and
helical inner conductors. From the data we conclude that perfusion of the AER with
regeneration solution results in an increase of €. and a decrease of tand.s. Partly, this
increase of & is caused by the sodium chloride and hydroxide ions in the solution, see
Appendix E. The decrease of tand.s is caused by changes of the AER properties since the
dielectric losses measured in tap water are smaller than those in the regeneration solution,
see also Appendix E. Comparing the values for €. and tand.s determined for tap water i.e.,
the values for tap water in Tables 5, with those in Table 4 for AER loaded with 1.1 g HA per
liter AER resulted in the hypothesis that the regeneration procedure was not effective. A
number of batch experiments, where the AER was loaded with different amounts of AER
and subsequently regenerated with the standard regeneration solution, confirmed this
hypothesis, see Appendix E. The batch experiments reveal that the AER can be regenerated
up to HA loads on the AER of about 1 g/I. If the AER is loaded with more than about 1 g/I HA,
higher HA load degrees are achieved but in this case, the regeneration procedure applied is
not effective anymore to regenerate the AER.

Additional remarks

The results presented here are a first step towards the development of a transmission
line based sensor for measuring on - line the load degree of ion exchange resin columns. The
proposed method brings along the advantage that the load degree of the IER is measured in
the column and not by analysis of the components of interest in the effluent of the column,
allowing quantifying loading of the column long before breakthrough occurs. An interesting
experimental observation in this study was the relation between the AF plots and the IER
load observed up to HA load degrees of about 1 g/I. At these load degrees and the applied
experimental conditions, &5 decreases with increasing load degree whereas tandesg
increases with increasing load degree. In a sensor, the values of e. and tand.s could be
determined on - line from the AF plots using the model discussed in [25] and applied in this
study. This opens possibilities to calculate the load degree of the AER from the fitted values
of €e5 and tand.q. At higher HA load degrees than about 1g HA/I, an opposite trend was
observed for the relation between the AF plots and the HA load degree. Most interestingly,
this load degree of 1 g/l was also the critical HA load degree above which the regeneration
procedure of the IER applied in this study was hardly effective anymore. This finding
suggests that the binding interactions between HA and IER are stronger at HA loads above
about 1 g/l as compared to HA loads below about 1 g/I. By definition, ion exchange is a
reversible process. The irreversibility occurring at HA loads >1 g/l indicates an interaction
between HA and IER of different nature than those occurring at lower loads, representing
truly ion exchange. On possibility is the formation of a complex network of neighboring HA
molecules with binding charge interaction via complexing cations such as calcium ions [40].
The observation that HA loading of >1 g/l coincidences with a different AF response
indicates that the developed sensor technology may be a promising tool to for the on - line
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assessment of the IER loading process. Finally it is noted that the results in this study
indicate that transmission line based sensors may be a useful tool for collecting additional
data in studies on interactions in composite dielectrics such as IER, nanofiltration, reverse
osmosis and reverse electrodialysis membranes and chromatography columns.

7.5 Conclusions

— The feasibility of using a flow-through stub resonator for measuring the load degree
of an AER column with HA was demonstrated for a solution of HA in tap water.

— Both the AER loading and regeneration can be theoretically described in terms of
changed dielectric properties of the system i.e., & and tand.y, due to adsorption and
desorption of the particular analyte (here HA) to the AER.

— At the experimental conditions applied, the sensor response to increasing AER loads
with HA changed for HA load degrees above 1 gram per liter AER which was also the critical
load degree above which regeneration of AER was seriously inhibited. Hence, the flow-
through stub resonator is a promising tool to assess the loading process of the AER.

— Resonators with inner conductors of different electrical length (straight vs helical) give
qualitatively similar results. Depending on the application one may opt for either type of
resonator. The straight version shifts f,.s to a higher frequency range, thereby increasing the
sensitivity of the sensor. The helical type, on the other hand, shifts f,.s in opposite direction.
This illustrates that transmission line resonators as described here offer a large freedom of
design, allowing in-line operation under “real life process conditions”.
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7.8 Supplementary Information

Appendix A

During the experiments on the loading of AER with HA, temperature and conductivity
fluctuations were measured to amount less than 2 °C and 200 uS/cm, respectively. Figures
A.1 and A.2 reveal that changes in the AF plots due to these conductivity and temperature

changes are negligible.
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Fig. A.1. AF plots in the 1-100 MHz range obtained for a resonator with straight inner conductor that was
filled with AER and perfused with feed solutions with a conductivity of 0.05 S/m and 0.07 S/m respectively.
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Fig. A.2. AF plots in the 1-100 MHz range obtained for a resonator with straight inner conductor that was
filled with AER and perfused with feed solutions with a temperature of 22, 19, 14 and 11 °C respectively.
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It should be mentioned that differences Afres for 2nd resonance in the experiments of
monitoring of the load of AER using the straight inner conductor between 0 g/l and 0.1 g/I
and experiments to measure difference in temperature within 3 oC are 3 MHz and 0.2 MHz,
respectively.

Table A.1 summarized of the measured water parameters as well as the equipment
used in this study.

Table A.1.

Parameters and apparatus.

Ne Parameters Apparatus
Temperature Thermometer, WTW, (Germany)
pH pH meter, WTW, (Germany)

Conductivity Conductivity meter, WTW, (Germany)
UV absorbance Spectrophotometer, type UV-1650PC, Shimadzu (Japan)

TOC TOC analyzer, Shimadzu (Japan)
IC TOC analyzer, Shimadzu (Japan)
DOC LC-OCD, Model 8, DOC-LABOR (Germany)

Humus acids-C  LC-OCD, Model 8, DOC-LABOR (Germany)

The anion exchange resin used in this study is Purolite® A860S (Brenntag NV, Belgium),
a commonly used resin by the drinking water industry to remove HA. The specifications of

Purolite® A860S are listed in Table A.2

Table A.2

Specifications of Purolite® A860S anion exchange resin.

Ne Characteristics Values
Physical N
characteristics Physical form Uniform particle size spherical beads 9
1. Shipping weight 680-730g/I o
2. (approx.) w
3. Uniformity coefficient <1.6 O
4, Particle size Range 425-1200 um
5. Temp Limit, CI” Form 80°C
6. Temp Limit, OH™ Form 40°C
Chemical
characteristics Specific Gravity 1.08
7. Reversible Swelling, <20 %
8. CI"™> OH~ cl-
9. lonic Form as Shipped Quaternary Ammonium
10. Functional Group >0.8 eqg/I (CI” form)
11. Total exchange capacity 66 -72 % (ClI” form)
12. Moisture Retention 0.8% (CI™ form)
13. Polymer Structure Macroporous  polyacrylic  crosslinked

with divinylbenzene
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Appendix B

In order to check the loading efficiency of HA on the AER, , samples were collected
simultaneously and used for the analysis of pH, humic acids-C and dissolved organic carbon
(DOC) (See Supplementary Information for analysis of total organic carbon (TOC), inorganic
carbon (IC) and total carbon (TC) as well as for UVyss, temperature, and conductivity).
Results are shown in Fig. B.1.
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dissolved organic carbon (DOC), total organic carbon (TOC), and inorganic carbon (IC) all as function of the
amount of HA adsorbed per unit volume of AER.
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The data of Fig. B.1 was obtained during the same experiment as those of Fig. 3. The
experiment started out with perfusion the resonator with tap water. After perfusion with
several resonator tube volumes (150 ml), the actual experiment started by switching to
perfuse with the analytical HA-containing feed solution. At this point, with no HA adsorbed
yet, the first sample (100 ml) was taken and the first AF response recorded. After 50 min,
i.e., with a perfusion rate of 3 ml/min the time needed to flow through one resonator tube
volume, the second sample was taken and the second AF-response recorded. The data of
Fig. B.1lis plotted against the over-time integrated adsorbed amount of HA as calculated
from the HA concentration in the feed (Table 5), the HA concentration in effluent and the
perfusion rate. After 100 min, the third sample was taken and the third AF-response
recorded, and so on. The 100 ml sample was split into 10 ml samples, which were used for
the analysis of the parameters shown in Fig. A.3. Even though derived from the same
experiment, these different types of measurements were independent in terms of chemical
analysis.

The plots for pH and humic acids-C show similar trends, between the first two data
points, i.e., rather constant (pH) or a slight increase, reflecting the switch from tap water to
HA-containing feed. Between the second and third data point, both parameters show a
rather steep decline. The drop in pH is caused by the appearance of HA in the effluent, the
one in humic acids-C because AER adsorbs HA very efficiently (note the very low
concentration in the effluent, 100-150 ppb, compared to the content of the feed, 3450 ppb).
From data point #3 off, both parameters start to increase, indicating the very beginning of
IER saturation. However, even though AER might start to saturate, the final saturation level
has not reached yet as it is expected that at that point the effluent concentration of humic
acids-C becomes close to its concentration level in the feed solution, 3450 ppb. It is not
entirely clear why the pH increases as well.

Compared to the time course of humic acids-C, that of DOC is completely different.
Most remarkable is the peak at a load of 0.7 g/L. This might be an artefact, to our opinion,
and caused, for example, by the presence of a larger undissolved particular, temporarily
increasing the absorbance and by that suggesting an increased DOC level. These points to an
essential difference between measurements of the effluent and monitoring the status of the
IER itself. During IER operation, the DOC peak might have evoked a false alarm, interpreted
as saturation of the IER, followed by starting the regeneration procedure too early.
Monitoring the IER itself represents an integrated measurement as the IER accumulates the
analyze of interest over time. Obviously, such type of measurement is less prone to false
positives due to temporal anomalies in the effluent.

Finally, in analogy to Fig. B.1, we aimed to correlate observed regeneration-induced
changes in AF response to effluent composition measurements. Results for pH, humic acids-
C and DOC are shown in Fig. B.2. Both the pH and DOC response show a clear peak,
representing, in the effluent, the presence of highly alkaline regeneration solution and
dissolved organic carbon compounds due to the regeneration process, respectively.
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Remarkably, the response of humic-acids-C clearly shows two peaks, suggesting the
presence of two populations of HA with different adsorption affinity for this particular AER.
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Appendix C

To exclude the effect of the epoxy resin on the bottom of the resonator the following
function was used:

function F = iox_air_epoxy_coax_resonator_1(x,f)
% dielctric constant of epoxy, defined from the simulation in the
% previously work
e_epoxy = 1.96;
h=0.267+0.029; % the total length of the resonator with epoxy on the bottom [m],
% note: epoxy on the bottom of the sensor
h_epoxy=0.062; % the length of the layer of epoxy [m]
db=25e-3; % diameter of the resonator;
%Erl = 2.4; %dielectric permittivity of polymer layer, [-]
Erl=x(2)%dielectric permittivity of polymer layer, [-]
Vt=pi*h*db”2/4; %volume of the empty resonator [m”3]
Vt_epoxy=pi*h_epoxy*db”2/4 % volume of epoxy resin in the resonator
f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of epoxy resin in the resonator
Vt_feed=Vt-Vt_epoxy %volume of the filled with epoxy resonator [m#3]
f_feed=Vt_feed/Vt %volume of feed substrate in the filled with epoxy resonator [m”3]
f_feed_t=1-f_epoxy %volume fraction of feed substrate excluding epoxy in the filled with epoxy resonator
[m"3]
len =0.27+0.029; % length of the coax resonator [m]
b = 25e-3; % inner diameter of the outer conductor [m]
a = 4e-3;% outer diameter of the inner conductor [m]
c=3*1e+8; % speed of light in vacuum [m/s]
Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors [-]
u = Ur*4*pi*le-7; % magnetic permeability of the dielectric [H/m]
sigma_stainless_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless
steel) [1/(Ohm*m)]
sigma_copper=5.96e+7;%conductance of the metal applied for inner conductor ( copper), [1/(Ohm*m)]
%effective conductance of both feed substrate and epoxy resin
% sigma_eff=sigma_feed*f_feed_t+sigma_epoxy*f_epoxy;
%effective dielectric permittivity of both feed substrate and epoxy resin
Er_air=1;
Eeff_ep_air=Er_air*(f_feed_t)+e_epoxy*f_epoxy;
r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m]
r0 = (4e-3)/2; %radius of the inner conductor of the resonator, [m]
Er2 =Eeff_ep_air % dielectric permittivity of a fluid substrate, [-]
Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]
e = 8.854e-12; % vacuum permeability [H/m]
u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]
r1=r0+1.5e-3/2; %radius of the inner conductor and outer radius of the polymer layer (m);
c=3*1e+8; % speed of light in vacuum, [m/s]
% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F/m]
C1=2*pi*e*Er1/(log(r1/r0))
% capacitance of the open ended coaxial stub resonator, contains a fluid, [F/m]
C2=2*pi*e*Er2/(log(r2/r1))
% total capacitance of the open ended coaxial stub resonator, [F/m]
C=1/(1/C1+1/C2)
% inductance of the open ended coaxial stub resonator, [H/m]
L = ((u/(pi*2))*log(r2/r0))
Eeff_coax=(Er1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]
Eeff=Eeff_coax
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E= Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

sigma_eff=0; % effective conductivity of the system, [S/m]

%Define the input voltage supplied by the function generator [V]

vin=500e-3; %input voltage supplied by the function generator [V]

omega = 2*pi*f;% angular frequency [rad/s]

Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depthl=sqrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth
skin_depth2=sqrt(2./(omega.*u.*sigma_copper));%skin_depth
Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator
Rs2=1./(sigma_copper.*skin_depth2);% surface resistivity of the inner conductor of the resonator
R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2*Zin)))).~2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance

The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

clearvars

format longE

load air_straight.txt % load the file with data of the day of experiment
f=air_straight(:,1); % Load experimental data; frequency
amplitude=air_straight(:,2); % Load experimental data; amplitude

9 f=f*1e+6; % Frequency conversion

Q %- Plot experimental data

© .

= hF = figure

= hA = axes

~ set(hA, 'XGrid', 'off', 'YGrid', 'on')
hold on

set(0,'DefaultTextFontSize',36,'DefaultTextFontName','Times New Roman', 'DefaultTextFontWeight', 'bold');
plot(f/1e+6, amplitude, 'LineStyle','none’,'Marker',".','MarkertEdgeColor','r', 'MarkerSize',35);
hold on

x0 =[0.01 1];

ya0 = iox_air_epoxy_coax_resonator_1(x0,f);

% % - Plot initial values

% hold on;

% plot(f,ya0,'--m")

%-Boundary conditions

LB =[0 0]; % Lower bounds

UB =[1 10]; %Upper bounds

% LB = [0]; % Lower bounds

% UB = [1]; %Upper bounds

% -Solving nonlinear least-squares curve fitting
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[x,resnorm] = Isqcurvefit('iox_air_epoxy_coax_resonator_1',x0,f,amplitude, LB, UB)
ya = iox_air_epoxy_coax_resonator_1(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b");

ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");

hold on

-5+
-10-

-15-

Amplitude (dBm)

-20-

200 150 200 250 300
Frequency (MHz)

The output parameters of the simulation Value
tanéeff 0.03
Epolymer layer 2.32

Fig. C.1. Experimentally obtained amplitude versus frequency plot of empty resonator with the layer of
epoxy resin on the bottom (red) and the polymer layer on the inner conductor using a quarter wave length
open-ended coaxial resonator with the straight inner conductor. Fitting data are shown for comparison (blue).

To determine the effective loss tangent tand.s (Eq. 5) and dielectric permittivity .5 (Eq.
4) the following function was used for the straight inner conductor:

function F = iox_feed_epoxy_coax_resonator_m(x,f)

% dielctric constant of epoxy, defined from the simulation in the

% previously work

e_epoxy = 1.96;

h=0.267+0.029; % the total length of the resonator with epoxy on the bottom [m],
% note: epoxy on the bottom of the sensor

h_epoxy=0.062; % the length of the layer of epoxy [m]

db=25e-3; % diameter of the resonator;

%Erl = 2.4; %dielectric permittivity of polymer layer, [-]

Erl=2.32%dielectric permittivity of polymer layer, [-]

Vt=pi*h*db”2/4; %volume of the empty resonator [m”3]

Vt_epoxy=pi*h_epoxy*db”2/4 % volume of epoxy resin in the resonator

f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of epoxy resin in the resonator

Vt_feed=Vt-Vt_epoxy %volume of the filled with epoxy resonator [m”3]

f_feed=Vt_feed/Vt %volume of feed substrate in the filled with epoxy resonator [m”3]

f_feed_t=1-f_epoxy %volume fraction of feed substrate excluding epoxy in the filled with epoxy resonator

[m”3]

len =0.27+0.029; % length of the coax resonator [m]
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b = 25e-3; % inner diameter of the outer conductor [m]

a = 4e-3;% outer diameter of the inner conductor [m]

c=3*1e+8; % speed of light in vacuum [m/s]

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric [H/m]
sigma_stainless_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless
steel) [1/(Ohm*m)]

sigma_copper=5.96e+7;%conductance of the metal applied for inner conductor ( copper),
[1/(Ohm*m)]%effective conductance of both feed substrate and epoxy resin

% sigma_eff=sigma_feed*f_feed_t+sigma_epoxy*f_epoxy;

%effective dielectric permittivity of both feed substrate and epoxy resin

Er_feed_iox=x(2);

Eeff_ep_air=Er_feed_iox*(f_feed_t)+e_epoxy*f_epoxy;

r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m]

r0 = (4e-3)/2; %radius of the inner conductor of the resonator, [m]

Er2 =Eeff_ep_air % dielectric permittivity of a fluid substrate, [-]

Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

e = 8.854e-12; % vacuum permeability [H/m]

u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]

r1=r0+1.5e-3/2; %radius of the inner conductor and outer radius of the polymer layer (m);

c=3*1e+8; % speed of light in vacuum, [m/s]

% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F/m]
C1=2*pi*e*Er1/(log(r1/r0))

% capacitance of the open ended coaxial stub resonator, contains a fluid, [F/m]
C2=2*pi*e*Er2/(log(r2/r1))

% total capacitance of the open ended coaxial stub resonator, [F/m]

C=1/(1/C1+1/C2)

% inductance of the open ended coaxial stub resonator, [H/m]

L = ((u/(pi*2))*log(r2/r0))

Eeff_coax=(Er1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]

Eeff=Eeff_coax

E= Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

sigma_eff=0; % effective conductivity of the system, [S/m]

%Define the input voltage supplied by the function generator [V]

vin=600e-3; %input voltage supplied by the function generator [V]

omega = 2*pi*f;% angular frequency [rad/s]

Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depthl=sqgrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth
skin_depth2=sqrt(2./(omega.*u.*sigma_copper));%skin_depth
Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator
Rs2=1./(sigma_copper.*skin_depth2);% surface resistivity of the inner conductor of the resonator
R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.

Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+2*Zin)))).A2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance
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The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

clearvars

format longE

load nd_fith_straight.txt % load the file with data of the day of experiment
f=nd_fith_straight(:,1); % Load experimental data; frequency
amplitude=nd_fith_straight(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

hF = figure

hA = axes

set(hA, 'XGrid', 'off', 'YGrid', 'on')

hold on

set(0,'DefaultTextFontSize',36,'DefaultTextFontName','Times New Roman', 'DefaultTextFontWeight', 'bold');
plot(f/1e+6, amplitude, 'LineStyle','none’,'Marker',".",'MarkertEdgeColor','r', 'MarkerSize',35);
hold on

x0=1[01];

ya0 = iox_feed_epoxy_coax_resonator_m(x0,f);

% % - Plot initial values

% hold on;

% plot(f,ya0,'--m")

%-Boundary conditions

LB = [0 1]; % Lower bounds

UB =[1 100]; %Upper bounds

% LB = [0]; % Lower bounds

% UB = [1]; %Upper bounds

% -Solving nonlinear least-squares curve fitting

[x,resnorm] = Isqcurvefit('iox_feed_epoxy_coax_resonator_m',x0,f,amplitude, LB, UB)
ya = iox_feed_epoxy_coax_resonator_m(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b");

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");

hold on

N~
—
(O]
)
Q.
©
<
O

To determine the effective loss tangent tand.s (Eq. 5) and dielectric permittivity .5 (Eq.
4) the following function was used for the helical inner conductor:

function F = iox_feed_epoxy_coax_resonator_spiral(x,f)

% dielctric constant of epoxy, defined from the simulation in the

% previously work

e_epoxy = 1.96;

h=0.267+0.029; % the total length of the resonator with epoxy on the bottom [m],
% note: epoxy on the bottom of the sensor

h_epoxy=0.062; % the length of the layer of epoxy [m]

db=25e-3; % diameter of the resonator;

%Erl = 2.4; %dielectric permittivity of polymer layer, [-]

Erl=2.32%dielectric permittivity of polymer layer, [-]

Vt=pi*h*db”2/4; %volume of the empty resonator [m"3]

Vt_epoxy=pi*h_epoxy*db”2/4 % volume of epoxy resin in the resonator
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f_epoxy=(pi*h_epoxy*db”2/4)/Vt % volume fraction of epoxy resin in the resonator
Vt_feed=Vt-Vt_epoxy %volume of the filled with epoxy resonator [m#3]

f_feed=Vt_feed/Vt %volume of feed substrate in the filled with epoxy resonator [m”3]
f_feed_t=1-f_epoxy %volume fraction of feed substrate excluding epoxy in the filled with epoxy resonator
[m"3]

len =0.9+0.029; % length of the coax resonator [m]

b = 25e-3; % inner diameter of the outer conductor [m]

a = 1e-3;% outer diameter of the inner conductor [m]

c=3*1e+8; % speed of light in vacuum [m/s]

Ur=1; %relative dielectric permeability of the dielectric between inner and outer conductors [-]

u = Ur*4*pi*le-7; % magnetic permeability of the dielectric [H/m]
sigma_stainless_steel=1.45e+6;%conductance of the metal applied for inner and outer conductors (stainless
steel) [1/(Ohm*m)]

sigma_copper=5.96e+7;%conductance of the metal applied for inner conductor ( copper),
[1/(Ohm*m)]%effective conductance of both feed substrate and epoxy resin

% sigma_eff=sigma_feed*f feed_t+sigma_epoxy*f_epoxy;

%effective dielectric permittivity of both feed substrate and epoxy resin

Er_feed_iox=x(2);

Eeff_ep_air=Er_feed_iox*(f_feed_t)+e_epoxy*f_epoxy;

r2 = (25.4e-3)/2; %inner radius of the outer conductor, [m]

r0 = (1e-3)/2; %radius of the inner conductor of the resonator, [m]

Er2 =Eeff_ep_air % dielectric permittivity of a fluid substrate, [-]

Ur =1; %relative dielectric permeability of the dielectric between inner and outer conductors, [-]

e = 8.854e-12; % vacuum permeability [H/m]

u = Ur*1.257e-6;% magnetic permeability of the dielectric, [H/m]

r1=r0+0.5e-3/2; %radius of the inner conductor and outer radius of the polymer layer (m);
c=3*1e+8; % speed of light in vacuum, [m/s]

% capacitance of the open ended coaxial stub resonator, contains the oxide layer, [F/m]
C1=2*pi*e*Er1/(log(r1/r0))

% capacitance of the open ended coaxial stub resonator, contains a fluid, [F/m]
C2=2*pi*e*Er2/(log(r2/r1))

% total capacitance of the open ended coaxial stub resonator, [F/m]

C=1/(1/C1+1/C2)

% inductance of the open ended coaxial stub resonator, [H/m]

L = ((u/(pi*2))*log(r2/r0))

Eeff_coax=(Er1*Er2*log(r2/r0))/((Er1*log(r2/r1)+Er2*log(r1/r0)))% effective dielectric constant of whole
system, [-]

Eeff=Eeff_coax

E= Eeff * 1/(4*pi*1le-7*c*c); % vacuum permeability [H/m]

sigma_eff=0; % effective conductivity of the system, [S/m]

%Define the input voltage supplied by the function generator [V]

vin=80e-3; %input voltage supplied by the function generator [V]

omega = 2*pi*f;% angular frequency [rad/s]

Eim=((omega.*E.*x(1))-sigma_eff)./omega;%imaginary part of complex dielctric permittivity
skin_depth1=sqrt(2./(omega.*u.*sigma_stainless_steel));%skin_depth
skin_depth2=sqrt(2./(omega.*u.*sigma_copper));%skin_depth
Rs1=1./(sigma_stainless_steel.*skin_depth1);% surface resistivity of the outer conductor of the resonator
Rs2=1./(sigma_copper.*skin_depth2);% surface resistivity of the inner conductor of the resonator
R=Rs2/r0+Rs1/r2;% distributed element resistance R of the resonator [Ohm/m]
G=(omega.*Eim+sigma_eff)./(omega.*E).*omega.*C;%distributed element conductance of the resonator
[F/(m*s)]

gamma =(sqrt((R+1i.*omega.*L).*(G+1i.*omega.*C)));%complex propagation constant [1/m]

%notes on gamma: Re(gamma)=alfa = attenuation constant representing losses [Np/m];
Im(gamma)=beta=phase of the propagation constant [rad/m]

%since the signal is oscillating in time with omega rad/s, the propagation velocity of the wave [m/s] =
omega/beta; also, beta = 2*pi/wavelength.
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Zc=sqrt(((R+1i.*omega.*L)./(G+1i.*omega.*C)));% complex characteristic impedance of the resonator [Ohm]
Zin=Zc.*coth(gamma.*len);%complex input impedance of the resonator [Ohm]
vout=sqrt((real(Zin.*(vin./(50+2*Zin)))).A2+(imag(Zin.*(vin./(50+42*Zin)))).~2);%modulus of vout, the is the
recorded voltage by the spectrum analyzer [V]

F =20.*log10(vout)+13;%vout as a power ratio in dBm i.e., the measured power referenced to one mWatt and
the underlying assumption of a 50 Ohm load resistance

The main program was:

clear all % Clear all variables in function workspace

close all % Close all figures

clc % Clear command window

clearvars

format longE

load spiral_fith_nd.txt % load the file with data of the day of experiment
f=spiral_fith_nd(:,1); % Load experimental data; frequency
amplitude=spiral_fith_nd(:,2); % Load experimental data; amplitude
f=f*1e+6; % Frequency conversion

%- Plot experimental data

hF = figure

hA = axes

set(hA, 'XGrid', 'off', 'YGrid', 'on')

hold on

set(0,'DefaultTextFontSize',36,'DefaultTextFontName','Times New Roman', 'DefaultTextFontWeight', 'bold');
plot(f/1e+6, amplitude, 'LineStyle','none’,'Marker',".",'MarkerEdgeColor','r', 'MarkerSize',35);
hold on

x0 = [0 1];

ya0 = iox_feed_epoxy_coax_resonator_spiral(xO,f);

% % - Plot initial values

% hold on;

% plot(f,ya0,"--m')

%-Boundary conditions

LB =[0 1]; % Lower bounds

UB =[1 100]; %Upper bounds

% LB = [0]; % Lower bounds

% UB = [1]; %Upper bounds

% -Solving nonlinear least-squares curve fitting

[x,resnorm] = Isqcurvefit('iox_feed_epoxy_coax_resonator_spiral',x0,f,amplitude, LB, UB)
ya = iox_feed_epoxy_coax_resonator_spiral(x,f);

%- Plot fit results

Hf = plot(f/1e+6,ya,'b');

set(Hf, 'LineWidth',3)

hold on

xlabel('Frequency, (MHz)','fontsize',42,'fontweight','b');
ylabel('Amplitude, (dBm)','fontsize',42,'fontweight','b");

hold on
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Appendix D

In order to obtain a qualitative impression on the influence of the HA load of the AER on
the regeneration efficiency of the AER, a number of batch experiments were executed,
applying the following procedure:

1. The batch resonator was filled with new (never used) AER that was loaded with
chloride ions according to the procedure in the Materials and Methods part, section Anion
Exchange Resin (AER).

2. A desired concentration of HA was dissolved in 150 ml of tap water, resulting in a HA
solution, such that an AER load degree of 0.5 g/ (1 g/I, 1.5 g/I, 2 g/I, and 3 g/l) was obtained.

3. A photo was made of the HA solution obtained in step 2 to get a qualitative
impression on the HA concentration in the solution.

4. 100 ml of AER were added to the HA solution and the mixture was stirred during 30
minutes using a magnetic stirrer (slow stirring speed)

5. The dispersion of AER in the HA solution was filtered using a Buchner filter.

6. A photo was taken of the filtrate to get an impression on the HA concentration in
solution after the AER loading process.

7. A photo was made from the AER to get a qualitative impression of the amount of HA
adsorbed by the AER.

8. The AER loaded with 0.5 g/I (1 g/I, 1.5 g/I, 2 g/I, and 3 g/I) HA was regenerated using
the procedure in the Materials and Methods part, section Anion Exchange Resin (AER).

9. Photos were made from the AER and the regeneration solution to get an impression
on the efficiency of the regeneration procedure.

10. Subsequently, this regenerated AER was loaded for the second time with 0.5
g/l (1g/l,1.5g/l,2g/l,and 3 g/I) of HA load, applying steps 3 to 5.

11. Finally, pictures were made from the AER and the filtrate to get a qualitative

impression on the efficiency of the second adsorption step.
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Tables D.1 a D.2 show the results of the batch experiments executed according to the

procedure in steps 1-11.
Table D.1.

Color of the different solutions.

Solution HA

After 1° adsorption  After regeneration

After 2" adsorption

0.5 g/l

1g/l

1.5 g/l

2 g/l

3g/l

Chapter 7
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Table D.2.

Colour of the ion exchange resin for the different steps.

After 2" adsorption

Resin After 1*" adsorption After regeneration

0.5 g/l

1g/l

1.5 g/l

2 g/l

3g/l

(@)
>
Q
O
—
(0]
=
~

*Picture of sample reg_2HA is not there because a sample of was not taken.

The results in table D1 and D2 reveal that for HA load degrees on the AER higher than
about 1 g/l, the AER is not regenerated efficiently using the procedure applied in the
Materials and Methods part, section Anion Exchange Resin (AER).
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Fig. D. 6 shows SEM pictures of the surface of AER beads after the first and second
adsorption of 1 g/l of HA. In the image for second adsorption, dark spots appear pointed
towards a modification of the AER surface after the second adsorption step.

Y178 188 mm %148 {88 mm

Fig. C.6. SEM images of ion exchange resin, respectively after 1* and 2" adsorption of 1 g/l HA.

Appendix E

Figure E.1 shows the changes in the AF plots due to an effect of tap water and the
regeneration fluid (10%NaCl+2%NaOH).

W
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'g -25 3
g (oR
%. .30 Tap water _(CB
g s 2% NaOH+10%NaCl o
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o

20 40 60 80 100 120 140
Frequency (MHz)

Fig. E.1. The amplitude versus frequency or AF plots as an effect of tap water and the regeneration fluid
(10%NaCl+2%NaOH) using the batch resonator in the frequency range of 5-150 MHz.
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Chapter 8

Abstract

Even though currently existing technology is able to monitor the presence of
microorganisms and pollutions, quite often the detection limits remain too high [1 - 3]. To
remedy this lack of sensitivity demands sensor designs based on entirely different concepts.
This thesis focuses on the development of a new sensor platform based on transmission line
resonators and suitable for different sensor applications. The preceding chapters
demonstrated the proof-of-principle of this technology for several applications, ranging
from fluid composition to biofilm formation. In this final chapter we discuss several
technical improvements to enhance resonator behavior:

- inner conductors of different periodic structure;

- minimization of the finite length of transmission line connectors;
- combining stacks of PCBs and transmission line technology;

- miniaturization of the coaxial type resonator;

- inner conductors coated with selective absorption layers;

- determination of the complex characteristic of a dielectric;

- role of temperature.
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8.1 Inner conductors of different periodic structure

The shape of the inner conductor of stub resonators can adopt different geometries,
with the straight one (discussed most frequently so far) perhaps just as the most obvious
option. But there are alternatives and Fig. 1 shows two of them based on a different
periodic structure, either the helical (1A) or the rack-type (1B) [4].

2 2
/ /
N e 3 7 - 3
e I'e g S g
(. [
- ( - [
e S ,/" —+-
1 4 1 |
N {f" \ _ | _
\ S~ \ T
N 4 _1_ 4
( o | o
\ ;= / \ ' /
= T 5 = T 5
6 6
(A) (B)

Fig. 1. Schematic overview of a coaxial stub resonator (1) with an inner conductor (2) of different periodic
geometry, either helical (A) or rack-type (B). Indicated are: outer conductor (3), signal wire (4), ground wire (5),
and main transmission line (6).

The behavior of the resonator depends to a certain extent on the type of inner
conductor applied. Fig. 2 and 3 compare AF plots obtained with a resonator possessing a
straight (SIC) inner conductor with those obtained using a resonator with either the helical-
type (SSIC) or rack-type (RSIC) resonator, with the resonator filled with air (Fig. 2) or tap
water (Fig. 3). As is obvious from Figs. 2 and 3, the higher the periodicity (SSIC>RSIC>SIC),
the larger the number of resonances in a given frequency range. In addition, a higher
periodicity and by implication, a longer total (effective) electric length of the inner
conductor, shifts the resonance frequency of the first (base) resonance to a lower
frequency.
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Fig. 2. AF plots with air as dielectric between the two conductors of the resonator. Used geometry of
inner conductor: SIC-straight, SSIC-spiral (or helical) and RSIC-rack. (1000 point/scan).
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Fig. 3. AF plots with tap water as dielectric between the two conductors of the resonator. Used geometry
of inner conductor: SIC-straight, SSIC-spiral (or helical) and RSIC-rack. (1000 point/scan).

Figure 4 shows an entirely different design of a transmission line-based resonator, the
stripline, essentially the 2D analog of the coaxial-type resonator. Also for this design can the
(effective) electric length be increased by applying the concept of an inner conductor with
periodic structure, in this particular case rectangular-shaped.
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Fig. 4. Stripline resonator with meandering rectangular-shaped inner conductor.
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Fig. 5 features preliminary results obtained with this design, showing the AF response
after applying water with different sugar content (0-100 gr/| equivalent to 0-0.29 mol/I). As
shown by Fig. 5 and 6, an effect is observable at a concentration of 0.015 mol/I, the lowest
sugar concentration tested, notably at higher frequencies. Another conclusion arising from
Fig. 5 is that, in general, effects of sugar are more pronounced at higher frequencies. This
increased sensitivity at higher frequencies can be explained in general by the fact that for a
certain change in &, (e.g., due to a change in sugar concentration), the shift of fres (Afres) is
proportional to c(2n-1)/4l, implying a larger shift at higher n, i.e., at higher resonance
frequencies.

Milli-Q water
—— 5gr/1(0.015 mol/l)
—— 10gr/1 (0.029 mol/l)
25 1 50gr/1 (0.15 mol/l)
—— 100gr/I (0.29 mol/1)

Amplitude (dBm)
5

100 200 300 400 500
Frequency (MHz)

Fig. 5. AF plots obtained with the stripline resonator of Fig. 4 in response to Milli-Q water (with
conductivity of 10 S/m) containing different concentration of sugar (1000 point/scan). Temperature: 18+0.5
o
C.

-5 4 — Milli-Q water
——— 5gr/1(0.015 mol/l)

R —— 10gr/! (0.029 mol/I) )

N
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—
()
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Fig. 6. The first resonance of Fig. 5 shown in more detail.
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In conclusion, a straight (i.e., short) inner conductor evokes resonance frequencies at
relatively high frequency, resulting in enhanced sensitivity of the measurement because
dielectric dispersions effects become more prominent at higher frequency. On the other
hand, the helical or rack-type (i.e., long) inner conductor shifts the resonance frequency into
a lower frequency range. The practical, if not commercial, implication is that the
measurement can be performed with substantially less expensive electronic equipment, for
instance, a low price function generator and detector (spectra analyzer in this particular
case).

Future experiments will shed more light on the pro’s and contra’s of the different
designs, all in the context of the intended application and desired cost price of the sensor
device.

8.2 Minimization of the finite length of transmission line
connectors

As argued and demonstrated in the previous paragraph, the (effective electric) length of
the stub resonator plays a significant role in the AF response of the system. It is for this
reason that connecting the stub resonator to the main transmission line can be quite
challenging, especially for the coaxial stub resonator [13 - 16]. The reason is that the
connectors used increase the (effective) length of the total transmission line because they
function and behave as transmission line themselves. A possible solution is to avoid
generally used SMA and/or BNC connecters all together or, alternatively, to connect them
entirely differently. Fig. 7 shows an example of how that can be achieved, based on printed
circuit transmission lines [14].

Fig. 7. Schematic view of a printed circuit transmission line (1), positioned on a metal ground plane (2),
with slots for inner and outer conductor (3) of the coaxial stub resonator (in the center) and two SMA
connectors (4).
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One consequence of the design of Fig. 7 is however that we substitute a classic coax
transmission line of 50 Q by a printed circuit transmission line with different impedance. To
account for the resulting impedance mismatch, the structure shown in Fig. 8 can be used.

2 3

Fig. 8. Back (top) and front (bottom) of the printed circuit transmission line shown in Fig. 7, with slots for
SMA connectors (1), the signal transmission line (2) and the connection of the outer conductor to the ground

plane (3).

A photo of such a printed circuit transmission line is shown in Fig. 9.
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Fig. 9. Photo of a printed circuit transmission line with slots for inner and outer conductor of the coaxial

stub resonator (in the center) and two SMA connectors.
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8.3 Combining stacks of PCBs and transmission line

technology

As argued in the previous paragraph, the sensitivity of transmission line resonators is
determined not only by the design of the stub resonator but in addition also by the electric
connections between stub resonator and the main the transmission line. Here we
demonstrate a design solution using stacks of PCBs [17 - 20].

Fig. 10 shows a design comprising three layers of printed circuit board (PCB) with the
stripline resonator printed on PCB no. 1. The two remaining PCBs form the electrical
interface for connecting the resonator to the main transmission line.
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Fig. 10. Schematic view of a stack of three PCBs (1-3). The stripline resonator with signal wire (6) is
printed on PCB no. 1, also containing a slot for a SMA connector (4). Conductive (metal) holes (5) in PCB no. 1

and 2 are distributed uniformly all over the PCB surface area.

8.4 Miniaturization of the stub resonator sensor

In general, miniaturization increases the sensitivity of stub resonators because they
shift the resonance frequency even further into the high frequency range. One way to
achieve miniaturization of the system is combining a prototype based on coaxial stub
microfluidic impedance transformer (COSMIX) technology [8] and the coaxial stub resonator
technology presented in this thesis. An example is shown in Fig. 11, a coax stub resonator of
2 cm length with the main transmission lines connected using printed circuit transmission
lines. Note that this design allows flow-through of the measured solution.
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Fig. 11. A coaxial stub resonator of 2cm length connected to the main transmission line by means of

printed circuit transmission lines.

As an example, combining the designs of [8] and [12] results in a quarter-wave stub
resonator (with length of around 0.5 cm) with a base resonance frequency of 1.6 GHz if
filled with water of dielectric permittivity of 80.

The (measured) dielectric permittivity of both liquids and solids depends to a large
extent on the frequency used, from constant (&) at low frequencies to a smaller limiting
value €, at higher frequencies. This effect of frequency on the calculated € value is caused
by polarization effects of the material under investigation. Debye theory provides a
theoretical framework to quantify this effect using a single dielectric relaxation time
constant t. The value of gp and €. are related by the following expressions:

€ = Ere — JEim (1)
&) —€

€re =gw+0—2°°2
l+w't (2)

(o0]
—
[}
o+
o
©
=
O

T
Em = (€0 =€) ——5
l+w't (3)

where
€, relative dielectric permittivity (-);

£re, the real part of the complex dielectric permittivity &, (-);
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€im, the imaginary part of the complex dielectric permittivity &, (-);

&, static dielectric constant of the solution (-);

€., optical dielectric constant of the solution (-);

T, relaxation time (s);

o, ionic conductivity of the dissolved salts, (S/m, mho/m 1S/m=1mho/m);

w, angular frequency, w=2m f (rad/s).

Measuring at high frequency (accomplished by miniaturization) thus offers extra
information of the dielectric properties of the sample under study, &, i.e., the dielectric
losses of the system representing a material characteristic, as is €. In case of a composite
material, e.g., a mixture of fluids, the system is characterized by multiple t values, one for
each component [9 - 11].

Moreover, considering the skin effect, characteristic impedance and even multi-modes,
future plans include improving the sensitivity and miniaturization of the sensor based on the
optimization of the geometry and depending on the application.

8.5 Inner conductors coated with selective absorption layers

In parallel to the PhD study presented here, in the framework of the Wetsus Sensoring
theme, at Delft university PhD student Judith Staginus explored the feasibility of a so-called
capacitive sensor. Aim of this project is to develop a sensor that measures impurities in
water [1, 6]. Figure 12 shows a schematic view of the concept of the Delft sensor. The
working mechanism is based on the capacitive response of interdigited electrodes (IDEs)
coated with a selective absorption polymer layer. The selectivity of the sensor arises from
the chemical properties of the coating used. The work of Judith Staginus reveals that the
capacitive response of the IDEs, covered with a thin layer of polydimethyl siloxane, enables
detection of volatile organic compounds (VOCs) in water. Further, that the sensor response
changes during absorption and desorption of VOCs were fully reversible.

Water +
Organic Comp

Polymer Layer
IDE (gold)
Glass

Fig. 10. Artistic view of the Delft capacitive sensor with the IDE electrode coated with a selective polymer
absorption layer (PhD project of Judith Staginus [7]).
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Aim of a next Wetsus/Delft project, starting July 1** 2014, is to integrate the two lines of
research i.e., the R&D on the capacitive sensor platform with a polymer adsorption layer [1 -
6] and the R&D on transmission line sensors presented in this thesis into a completely new
sensor platform technology. In a nutshell, this new technology comprises the coating of a
microstripline shown in Fig. 4 with polymers having very specific and reversible absorption
properties.

The new platform is expected to combine the “best of two worlds” i.e.,:

- high sensitivity (impurity concentration through absorption);

- high selectivity (specific absorption properties of the polymer combined with
broad frequency range dielectric spectroscopy);

- low noise (very small parasitic capacities due to the use of transmission line
technology);

- low / no drift (possibilities to use the transient of the response rather than
absolute signal changes to detect the level of impurities);

- possibilities for miniaturization (e.g., meander stripline as consumable in a hand
held device);

- no need of using expensive electrical equipment thanks to the “long effective
resonator length” resulting from the meander microstrip technology and the

related high quality factor of the resonator.

8.6 Determination of the complex characteristic of a
dielectric

The diagram of Fig. 13 schematically depicts the steps required to determine the
(complex) dielectric properties of a fluid (or solid) using transmission line-based technology.
The obtained parameters can then be used for extensive modeling (as outlined in Chapter 3)
or simulation of AF responses allowing comparison with experimental data.
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Analyze and
determination of the
components of the

Analyze and
»| determination of the
temperature coefficients

attenuation
—_ - / 4 o ™~
~
— A — _ — A _
r Determination of r Determination of | r 1
| the expansion | complex dielectric I | . |
| coefficients of | | permittivity of | | |
Lo metals | _ dielectrics | [ _ _ _ _ |

Determination of the complex characteristic of a

dielectric

Fig. 11. General algorithm for the determination of the complex dielectric properties of materials. Dotted
lines and ellipsis (***) indicate an available and\or additional components which depend on the type of the
resonator.

Starting on the left in the diagram, the four main sources of attenuation in a lossy-type
of transmission line are losses due to metal loss ac, dielectric loss tangent ap, dielectric
conductivity ag and stray radiation ag [21 - 22].

a=ac+ap+as+a
c TAp TG T ag (4)

In the microwave frequency range, the overall loss of transmission lines filled with a
low-loss dielectric is dominated by ac (5):

@)
Q:.)- ac == s (5)
= 27,
—t
o
-
(0's)
where

Rs, surface resistivity [Q],

Z., complex characteristic impedance [Q].

Losses due to dielectric loss tangent tand.s are given by [12]:
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wCZ, (6)

ap =tand 4

In general, the loss due to the conductivity of the dielectric as is considered to be a
frequency-independent parameter, given by Eq. (4). However, this assumption is valid only
for low-loss dielectrics, as shown by Egs. (7-10):

GZ,
oy = 7
6= (7)
G:w-C-tanéeff (8)
L+
tanéeff :M (9)
wgf'é’

Wejm +0 -~ (10)
WE

G=w-C-tand =w-

where

C, distributed capacitance (F/m);

tané.g, dielectric loss tangent (-);

G, distributed dielectric conductance (S/m).

The contribution of stray radiation ax to the overall attenuation is normally very small,
around 2% [24].

Temperature coefficients

(o0]
—
()
o+
o
(4]
=
O

Changes in temperature not only lead to changes in resonance frequency but also affect
the shape of the AF response. Four temperature coefficients (TC) can be distinguished: TC of
the dielectric constant, TC of the cavity, TC of thermal expansion and TC of the resonance
frequency, actually a function of the three other TCs mentioned [22]:

TC of dielectric permittivity
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Ag,
T, =—:"
g, AT (11)
TC of cavity
L _lA
© L AT (12)

TC of thermal expansion

L.ad_1 AD
H AT D AT (13)

a; =

TC of resonant frequency

i Jo AT (14)

where

Afo, the total frequency variation corresponding to the temperature shift AT,
&, the variation of dielectric permittivity,

AL, the cavity expansion,

AH and AD, the resonator material linear expansions.

Complex characteristic impedance
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=
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The general expression for the complex characteristic impedance Z; of a transmission
line filled with lossy dielectric is given by:

Z. =R+ jwl)/(G + jwC) (15)
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where

C, distributed capacitance (F/m);
L, inductance per meter (H/m)
R, resistance per meter (Q/m)

G, distributed dielectric conductance (S/m).

Example of using TC for coaxial resonator

In the following example cavity expansion was considered to be negligible, implying that
it is assumed that the temperature change does not affect the length of the sample.

At the initial temperature, the characteristic impedance of the coaxial transmission line
is defined by:

7. - Mok, In(b/a) (16)
£9E, 2n

where

Lo, magnetic permeability of free space (vacuum permeability), (H-m-1): po=4m 107;
Uy, relative magnetic permeability (-);

£p, dielectric permittivity of free space (vacuum permittivity), (F-m-1): £0=1/(u0-c)'1/2;
b, inner diameter of outer conductor (m);

a, outer diameter of inner conductor (m).

The change in impedance AZ, as function of temperature, due to thermal expansion al,
can be written as:

(o0]
—
()
o+
o
(4]
=
O

s (11, In(b(1+a(b)-AT)/ a(1+a(a)- AT))
. EE,

2 (17)

where
a(a), expansion coefficient of inner conductor,

a(b), expansion coefficient of outer conductor.
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For instance, the expansion coefficients of copper and steel are 17-10°/°C and 11-10°
®/%C, respectively [24].

Taking into account the TC of dielectric permittivity te, the expression for the
characteristic impedance of the coaxial line is defined as:

ZC=V_0= f i Mok, In(b(1+a(b)-AT)/a(l+afa)-AT)) (18)
lo go€,(1+1,) 2n

Mathematical models and solutions

The complex dielectric permittivity of saline water is given by Debye:

€0 ~€x io

E=¢€,+

l1-itw  gyw (19)

There are several well-known dielectric models describing both the static dielectric
constant &y and optical dielectric constant €, of a solution as function of salt concentration
and temperature [25 - 27].

Fig. 12 shows typical AF responses obtained from tap water at different temperature
using the coaxial stub resonator. The preliminary results show experimental data close to
the theoretical predictions by Egs. 17 and 18. It should be mentioned that temperature
affects both the real €. and imaginary €, part of the complex dielectric permittivity €.
Since the proposed system measures the module of the complex effective dielectric
permittivity €5, the resonance frequency shifts to lower or higher frequency, depending on
the relative sensitivity to temperature of €, (related to conductivity losses due to the ion
species present) and g, (related to the stored energy). As can be seen in Fig. 11, the
temperature response of the 1*' resonance is dominated by the temperature effect on &,
whereas the response of the 2" and 3" resonance is dominated by the temperature effect
on €;m.
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Tap Water

Amplitude (dBm)
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Fig. 12. AF responses obtained with a coaxial batch resonator of 34 cm length, with tap water of different
temperature as dielectric.
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Summary

Drinking water, surface water and waste water may contain toxic or otherwise
undesired components at a wide range of concentration levels. In order to safeguard water
quality, the early detection of pollutants and control of process conditions by continuous
monitoring is mandatory. However, currently existing (bio) chemical detection methods are
offline and by implication labor-intensive and thus expensive. This conclusion drives the
search to develop a new class of inline sensors for the cost-effective monitoring of water
quality. The focus of this PhD study was to explore the use of antenna or transmission-line-
based technology to measure water quality in terms of its composition. In addition, several
other applications of this technology has been investigates, ranging from biofilm and
corrosion development to measuring the load of ion exchange columns.

Chapter 2 demonstrates that coaxial stub resonators can be used to assess the
dielectric properties of fluids. This technology, essentially radio-frequency spectroscopy,
comprises quarter wave length open-ended resonators, filled with a liquid sample that
serves as dielectric between inner and outer conductor. Changes in the dielectric properties
of the liquid sample result in changes of the electric properties of the resonator, e.g., its
resonance frequency and quality factor. Results obtained with either a batch or flow
through-type resonator indicate that the concept can be further developed into a cost-
efficient and low-maintenance sensor for the on-line fingerprinting of the dielectric
properties of fluids, such as drinking or waste water, ethanol and glycerol.

Chapter 3 elaborates on a theoretical description of the AF response of stub resonators.
The resonance frequency, derived from the AF response, is defined predominantly by the
permittivity of the fluid while damping arises from dielectric losses. Even though this
methodology has been extensively reported in the literature, without almost any exception
these studies refer to (near) ideal behavior regarding for example, geometry and negligibly
low conductivity of the fluid studied. Online stub resonator-based sensors (i.e., flow-
through) in use for industrial applications, however, quite often suffer from high dielectric
losses, non-ideal material choice of the conductors from an electrical point of view and
unconventional resonator geometry. Therefore, in order to ensure correct data
interpretation, a straightforward model accounting for the effects of dielectric losses,
conductor losses (skin effect) and impedance mismatches on the AF response is highly
desirable. In addition, such a model can help to optimize future sensor designs. Here, we
present a lumped parameter model, essentially based on telegrapher’s equations, that
accounts for the skin effect, dielectric losses and impedance mismatches between the
transmission lines to the resonator and in the resonator itself. The adequacy of the method,
even in the case of impedance mismatch, is demonstrated by comparing these model
simulations with experimentally obtained AF curves.

Chapter 4 demonstrates the proof-of-principle to use stub resonators for evaluating
bulk solvent properties of water-ethanol mixtures. Experimental results are in close
agreement with theoretical models predicting the dielectric properties of binary mixtures.
However, the potential applicability of the technique reaches further than assessing the
dielectric properties of binary water — ethanol mixtures. Indeed, the method introduced
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here might be a useful tool in the field of food industry, organic chemistry, biochemistry and
microbiology for on-line monitoring the content of ethanol.

Chapter 5 introduces an entirely different application of stub resonators, i.e., to assess
effects due to corrosion of metal surfaces. The method can be applied to all situations
where metals are exposed to a corrosive (fluidic) environment, including, for instance, the
interior of pipes and tubes. In the absence of corrosion, inner and outer conductors of the
resonator are separated by a single dielectric, i.e., a fluid. Oxidation of the metal surface of
inner and/or outer conductor changes the properties of the dielectric between inner and
outer conductor because it introduces a dielectric permittivity that differs from that of the
fluid. The two types of transmission line designs explored are coaxial and coplanar stripline
(CPS). Irrespective the design, the method outlined here offers an equipment-undemanding,
low maintenance and cost-efficient in-line early warning system to detect (the onset of)
corrosion. As for its geometry, the additional advantage of the system is its freedom of
design, from coax to one embedded in printed circuit boards.

Chapter 6 explores the possibility to use coaxial stub resonators for the detection of
(early stages of) biofilm formation. The sensitivity of the system was improved by using a
relatively short resonator (higher frequencies, better measurement of dispersion) and
applying glass beads embedded in feed solution as dielectric between inner and outer
conductors. The rationale of the glass beads is providing a larger surface area for biofilm
formation. Analysis of the biofilm and the resonator signal as functions of time indicates
that the sensor can be used to detect early stages of biofilm formation. It was observed that
the sensor signal discriminates between biofilm formation (spots of bacterial growth on the
glass beads) and the presence of a nearly homogeneous biofilm.

Chapter 7 discusses yet another application of stub resonators, i.e., to monitor the
loading of ion exchange resins, used for, for instance, the reduction of natural organic
matter (NOM) from drinking water. Fouling of anion-exchange resins (e.g. Purolite® A860S)
by adsorption of (colored) organic substances in present surface water (e.g. humic acid)
affects both the real and imaginary part of the complex dielectric permittivity of the system.
As a result, the AF plot shows a shift of the resonance frequency and/or a change of shape
of the resonance peak(s).

Chapter 8 provides conclusions and recommendations for further research.

258



Samenvatting

Drink-, oppervlakte en afval water kunnen veel ongewenste chemische stoffen bevatten
die bovendien kunnen voorkomen in heel verschillende concentraties. Waarborging van de
veiligheid van de waterkwaliteit vereist daarom permanente monitoring en bovenal een
vroege detectie van verontreinigingen. Huidige (bio)chemische analyse- en meettechnieken
zijn echter veelal off-line en om die reden arbeidsintensief en dus kostbaar. Dit laatste
aspect is een belangrijke (economische) drijffveer om een nieuw type sensoren te
ontwikkelen die niet alleen kostenbesparend zijn maar bovendien de waterkwaliteit
continue kunnen bewaken. Mijn PhD onderzoek was er op gericht om te kijken of een
sensor gebaseerd op antenne (of transmissielijn) technologie kan worden gebruikt om water
kwaliteit, in termen van samenstelling, te bepalen. In aanvulling hierop werden ook andere
mogelijke toepassingen onderzocht, varierend van een sensor om biofilm- en corrosie
(roest)vorming te detecteren tot een sensor om de verzadigingsgraad (load) van
ionenwisselaars, zoals veel gebruikt binnen de watertechnologie, te meten.

Hoofdstuk 2 laat zien dat zogeheten coaxiale stub resonatoren kunnen worden
gebruikt om de dielectrische eigenschappen van vioeistoffen te bepalen. Deze technologie,
feitelijk een variant van radio-frequentie spectroscopie, berust op de toepassing van een
kwart-golflengte open resonator, met de te onderzoeken vloeistof als dielectricum tussen
de binnen en buiten geleider. Veranderingen in de dielectrische eigenschappen van de
vloeistof vertalen zich in een verandering in de electrische eigenschappen van de resonator,
bv de resonantiefrequentie en Q- of quality factor. Resultaten verkregen hetzij met een
batch-, hetzij met een doorstroom uitvoering van de sensor, laten zien dat dit concept
verder kan worden ontwikkeld en kan leiden tot een sensor om on-line de dielectrische
eigenschappen van vloeistof te meten. De sensor is niet alleen naar verhouding goedkoop in
aanschaf maar stelt tevens lage eisen aan onderhoud zodat ook de operationele kosten laag
zijn.

Hoofdstuk 3 behandelt een theoretische beschrijving van de amplitude — frequentie of
AF response van stub resonatoren. De resonatie frequentie, zoals afgeleid van de gemeten
AF response, wordt hoofdzakelijk bepaald door de permittiviteit van de vloeistof terwijl
dielectrische verliezen demping van het signaal veroorzaken. Hoewel deze technologie al
uitgebreid in de literatuur is beschreven, bijna zonder een enkele uitzondering is daarbij
altijd uitgegaan van een ideale geometrie en een resonator die ideaal gedrag vertoont
doordat bv gekozen is voor vloeistoffen met een te verwaarlozen geleiding. In de praktijk
komt dit zelden voor en hebben on-line resonatoren voor industriele toepassingen te lijden
van hoge dielectrische verliezen in de vloeistof en, gezien vanuit electrisch perspectief, bv
een niet-ideale geometrie en materiaalkeuze wat betreft de geleiders. Dit alles betekent dat
een juiste interpretatie van de data gegenereerd door dit type resonatoren sterk afhangt
van een model die al deze niet-ideale eigenschappen en gedrag (dielectrische verliezen, skin
effect en impedantie mismatch) meeneemt in haar theoretische beschrijving. Een dergelijk
model kan tevens helpen om het ontwerp van toekomstige resonatoren te verbeteren. Het
model dat hier wordt gepresenteerd is een zogeheten lumped parameter model dat
gebaseerd is op de telegrapher’s equations en dat bovengenoemd niet-ideaal gedrag
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meeneemt in de beschrijving. Een vergelijk met experimentele data laat zien dat dit model,
zelfs in het geval van impedantie mismatch, de AF response van resonatoren redelijk goed
beschrijft.

In Hoofdstuk 4 worden stub resonatoren gebruikt om de bulk eigenschappen van
water-ethanol mengsels te bepalen. De experimentele data vertoont goede overeenkomst
met de theoretische modellen voor dit soort binaire mengsels. De mogelijke toepassingen
van deze technologie reiken echter veel verder dan metingen aan water — ethanol mengsels.
Voor deze sensor zien we toepassing in de voedselindustrie, de organische en biochemie en
bv de microbiologie om on-line het ethanolgehalte te kunnen meten.

Hoofdstuk 5 introduceert een geheel andere toepassing van stub resonatoren, het
detecteren van vroege stadia van corrosievorming op metaaloppervlakken. De methode kan
worden toegepast in alle situaties waarbij metalen worden blootgesteld aan corroderende
(vloeistof) condities, ook indien dit proces plaats vindt in het binnenste van pijpen en
buizen. In de afwezigheid van corrosie zijn beide geleiders van de resonator gescheiden
door een enkel dielectricum, de vloeistof. Oxidatie van het metaaloppervlak van binnen
en/of buitengeleider verandert de eigenschap van het dielectricum omdat het een
dielectrische permittiviteit toevoegt aan het systeem die verschilt van die van de vloeistof.
Twee verschillende resonator ontwerpen zijn onderzocht, de coax uitvoering en de stripline.
Ongeacht het ontwerp, de methode hier beschreven biedt een eenvoudige en goedkope
manier om vroege stadia van corrosie te detecteren.

Hoofdstuk 6 onderzoekt een andere toepassing op het gebied van
oppervlaktemodificatie, waarneming van vroege stadia van biofouling. De gevoeligheid van
het systeem was verhoogd door gebruikt te maken van een relatief korte resonator (hogere
frequenties en bijgevolg een nauwkeuriger meting van dispersie) en door toepassing van
glas korrels in de ruimte tussen beide geleiders. Deze laatste aanpassing leidt tot een
enorme toename van oppervlak waarop de vorming van een biofilm kan plaats vinden.
Analyse van zowel de biofilm als de AF response van de resonator laat zien dat deze
uitvoering van de sensor inderdaad geschikt is om biofouling in een vroeg stadium waar te
nemen. De resultaten laten tevens zien dat de sensor onderscheid maakt tussen
afzonderlijke spots van bacteriegroei, in een vroeg stadium, en de aanwezigheid van een
bijna homogene bioflim in een later stadium.

Hoofdstuk 7 beargumenteert wederom een andere toepassing van stub resonatoren,
bepaling van de verzadigingsgraad van ionenwisselaars, bv die welke worden gebruikt
binnen de watersector voor de reductie van organisch materiaal (NOM) dat van nature in
oppervlaktewater voorkomt. Vervuiling van anionenwisselaars (bv Purolite® A860S) door
adsorptie van organisch materiaal aanwezig in het oppervlaktewater, bv humus zuren, heeft
een effect op zowel het gemeten reeéle deel van de complexe dielectrische permittiviteit als
op het imaginaire gedeelte. Het gevolg is dat de waargenomen AF-response verschuift naar
een andere resonantiefrequentie en dat de vorm van de resonantiecurves verandert.

260



Samenvatting

Hoofdstuk 8 tenslotte bevat de eindconclusies alsmede aanwijzingen voor vervolg
onderzoek.
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